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Abstract—The introduction of Machine Learning in large scale
utility networks extends the room for improvement in the quality
of service and maintenance costs. The ever expanding network of
smart meters allows for a more accurate estimation of the state
of the water distribution systems, at the same time requiring
modern data processing solutions. By fusion with the more
traditional approach in this field of research it is possible to
enhance the existing capabilities for network analysis and to
extend the algorithms to the level of cognitive abilities that form a
basis for more efficient decision support system. In this paper we
extend the fault sensitivity analysis for water distribution systems
with the insights provided by state-of-the-art Machine Learning
algorithms for data clustering and anomaly detection.

I. INTRODUCTION

Nowadays, the improvements in the quality of service
and resource management in large scale water distribution
systems are in many ways related to the integration of
smart infrastructure and Information and Communication
Technology (ICT) systems [1].

IoT (Internet of Things) architectures and the industry
standard SCADA (Supervisory Control and Data Acquisition)
systems provide the background for a smart infrastructure in
various fields [2].

Considering today’s aging infrastructure, that requires
regular maintenance and repairs, the problem of fault detection
(i.e. leaks, burst pipes) is critical for ensuring minimal
disruption to the service.

Using data from smart meters is valuable for reducing the
effects of a breakdown, in a proactive strategy [3], and for
reducing the repair time and costs by a more accurate detection
of leaks and estimating the location within a complex network.

The problem of detecting anomalies in measurements
structured as time-series data is of particular interest in the
domain of water distribution systems. Unsupervised learning
methods such as clustering are being used in different domains
for extracting relevant information from vast amounts of
data. The problem of anomaly detection in a given data set
is a subject of both supervised and unsupervised learning.
Unsupervised learning is given by clustering methods that
are used to extract patterns from the data set, without prior
knowledge of the possible results. The anomaly detection
methods represent a type of supervised learning methods, as
the anomaly can be defined as a discrepancy between the data

set and the patterns given by clustering. In the context of
water distribution systems, the data is recorded using smart
meters and is available as time-series. In the context of ML
(Machine Learning), this represents the original data set. For
each meter, there are time-series grouped by days. As the data
source is known, the problem of detecting anomalies is related
to the particular meter. In the context of multiple meters, in
a given network topology, there can be correlations between
the anomalies.

The effect of a detected anomaly on the incidence of several
other detected anomalies, as a direct consequence, is the main
subject of this paper. Then we propose a method for large
scale detection of anomalies that uses the results from different
layers of the network, which is a subject of a future paper.

II. RELATED WORK

Machine Learning (ML) is currently being used in a broad
range of applications to extract relevant information from large
amounts of data. Data clustering and aggregation, outlier and
anomaly detection are some of the applications of Machine
Learning in various fields of work.

In [4] a clustering method using the k-means algorithm is
used to extract patterns from different levels in a multiple
clustering strategy. Using Automatic Meter Reading (AMR),
the patterns for a given consumer demand can be extracted
from 24-hour time-series and it is possible to create a
classification of consumer types [5]. In the same way, the
anomaly patterns can be extracted, using the discrepancies in
the consumer demand as the input data set.

In the case of utility networks and water distribution
systems, the cost of maintenance can be reduced by adopting
a proactive strategy, as stated in [3]. Nonetheless, anomalies
and breakdowns are bound to appear and the rapid response is
a key factor in minimizing the damage and reducing the repair
costs.

There are several approaches to anomaly detection
using Machine Learning, such as density-based anomaly
detection, clustering-based anomaly detection, support vector
machine-based anomaly detection [6]. The clustering-based
method we find best suited to the problem, as it can also reveal
information about the types of consumers in the network and
the types of anomalies that can be related to the particular
consumer type.



In the context of water distribution systems, an important
source of anomalies is represented by leaks. There are many
approaches for leak detection, that range from dedicated
hardware solutions, to real-time monitoring and automatic
control systems, as described in [7], [8], [9], [10], [11].

A method for fault sensitivity analysis in water distribution
system is described in [12]. This method uses a fault sensitivity
matrix that shows the direct effect of leaks on measured
parameters (flow, pressure). We find that the method can be
used for a fault sensitivity analysis, that uses the standard
deviation of cluster centroids, in the case of anomaly detection
using Machine Learning algorithms.

There are, nonetheless many types of anomalies that
can arise in the context of smart distributed systems such
as cyberattacks and even malicious behavior of the actors
involved in water distribution system management [13].
Therefore, one can identify a broad range of patterns that can
be considered an anomaly, so that an extensive knowledge base
has to be considered.

III. PROPOSED SOLUTION

The data from the smart meters is collected from a water
distribution network in Milan, and is represented as time-series
for each meter for each day, each having 24 samples. The
data set is structured in multiple files. Each file corresponding
to the associated meter, contains the data as a matrix, where
the rows represent the days and the columns represent the
hours (samples). Each sample represents the average flow
during the last hour. In real-life conditions, the data set would
be a real-time stream instead, that has to be handled by
Big Data solutions, such as message brokers (e.g. Apache
Kafka, Apache Spark, RabbitMQ) and real-time databases
(e.g. RethinkDB). The Big Data architecture and performance
analysis is not a subject of this paper though.

Also, the proposed solution is demonstrated using a limited
subset of the broad range of possible anomalies, that is given
by leaks. An extensive comparison of the possible anomaly
sources is a subject of further research.

The data is clustered using the k-means unsupervised
learning algorithm to obtain the general consumer patterns
for the normal conditions. When an anomaly is detected, the
clustering algorithm also calculates the associated patterns. By
subtracting the normal conditions clusters from the anomaly
clusters, it is possible to extract the anomaly patterns and to
highlight the particular type of anomaly. This method assumes
a form of buffering of the raw data and the clustering results,
so that the results are aligned with the real-time detection and
confirmation of the anomaly. The strategy for separating the
normal clusters from the anomaly clusters is described in the
following paragraphs.

We consider the context of a decision support system
that should generate alerts when anomalies are detected in
a water distribution system. The focus is on the Machine
Learning algorithms that can extract this information using raw
measurements from smart meters. We consider a clustering

algorithm, along with the anomaly detection algorithm, as
shown in Figure 1.

The main problem with this configuration is that an anomaly
in the data has the effect of shaping the cluster centroids so
that the anomaly is no longer detected after a certain amount
of time. This is similar to a closed loop feedback system,
where the anomaly can be represented by a disturbance, that
is rejected as part of the normal operation of the system.

For evaluating the proposed anomaly detection method, we
define the mathematical model of the network and a set of
questions that should provide further understanding of the
problem.

A. Mathematical model

The model of the water distribution system is a standard
graph representation that implements the fundamental laws
defining the water flow through a pipe. The model is used
to calculate the state of the network based on the available
data.

The first law is the mass conservation law that states that
the input flow to a node is equal to the output flow:∑

j

qij −
∑
j

dij = 0, i = 1..n (1)

The second law is the equivalent of Ohm’s law for laminar
flow and gives the value of the flow for a network segment
between two adjacent nodes:

qij =
hi − hj
Rij

(2)

Rij =
8ηlij
πr2ij

(3)

The dynamic model is simulated using a first order filter
that is defined according to the physical characteristics of the
associated pipe:

Gij(s) =
1

Tijs+ 1
(4)

We considered the following notations:
qij - input flow from node i to node j
dij - output flow from node i to node j
hi - head (pressure) in node i
Rij - resistance to flow in the pipe from node i and j
η - fluid viscosity
lij - length of the pipe between node i and node j
rij - radius of the pipe between node i and node j
Gij(s) - transfer function of the filter for the pipe between

node i and node j
Tij - filter time constant
s - Laplace transform variable

The transient state is simulated using the first order models
associated to the network segments (3). The method of
simulation represents an iterative approach that filters the data
by a feedback component for each corresponding segment.



Figure 1. System overview

B. Experimental setup

We defined the configuration of the proposed anomaly
detection system and the main problem that arises from the
requirement of separating the anomaly from the real-time
measurements.

In this paper, we answer three questions that bring an
in-depth understanding of the problem and the possible
solutions:

A. The first question that we analyze in section IV is the
transient effect, the amount of time until the effect of the
anomaly is transposed in the cluster centroids. This is an
important step for the proposed method, providing a measure
for tuning the parameters of the associated buffering algorithm.

B. The second question that we analyze in section IV is the
correlation effect, the correlation between multiple detected
anomalies. This is an important step for the proposed method,
as it provides a measure for the level of uncertainty in the
estimated parameters.

C. The third question that we answer in this section is
related to the possibility of isolating the anomaly so that the
cluster centroids for the demand patterns are not affected,
and only the normal behavior is represented. This takes into
consideration the results that we obtain for the first two
questions in section IV.

We considered the experimental approach that is validated
in simulation as follows:

1. The normal conditions are simulated using real
measurements for a given consumer node and estimated data,
obtained using a hydraulic model of the network, for the
other nodes. The clustering results that are provided by this
simulation define the reference patterns that are further used
to evaluate the anomalies.

2. The anomaly scenarios are simulated by adding a specific
profile to the data set that is associated to a given consumer
node. The same hydraulic model is used to estimate the values
for the other nodes.

3. A measure of similarity (discrepancy) is calculated from
the normal conditions and the simulated anomaly scenario.
There are two possibilities for this purpose:

3.A. The anomaly conditions are simulated in the same
way as the normal conditions, using the data that is modified
according to the type of anomaly that is evaluated. The
cluster centroids, obtained separately for the normal conditions
and for the simulated anomaly scenario are subtracted and
the average standard deviation is calculated. This variant is
actually represented in the system overview schematic (Figure
1).

3.B. The real-time data sets associated to the normal
and anomaly conditions are subtracted and then we use
the clustering algorithm to extract the patterns. The average
standard deviation is calculated from the difference patterns.
This variant we find more straight-forward to use for
simulation purpose.

This setup is used for each experiment, as the first step, that
represents the estimation of the anomaly profile. In this paper,
we considered the method 3.B. to measure the discrepancy
between the normal conditions and the simulated anomalies.
This variant has some advantages for simulation purpose.
When comparing the overall clustering effort, the first variant
uses two clusterings from the start. In the second variant, a
single clustering is used to calculate the deviation patterns,
though in the final solution, an additional clustering is still
used to evaluate the patterns under normal conditions (par).
When comparing the post processing effort, in the first variant,
two sets of clusters have to be subtracted, after evaluating the
most similar pairs. In the second variant, there is the additional
estimation of the normal conditions during the anomaly (par).

It is nonetheless important that the data, that represents the
normal conditions, does not contain anomalies. This is actually
ensured by the DSS, in the sense that the anomaly is detected
before it is transposed into the data set, and the clustering
is either split into two independent processes (3.A.) or it is
buffered until the anomaly is resolved, and the difference data



set is clustered instead (3.B.). This assumes that in the second
variant, the normal conditions data set has to be estimated
during the anomaly, by using the identified patterns (e.g.
averaging). Therefore, there is no clear advantage of either
variant in real-life conditions. Nonetheless, for simulation
purpose, it is easier and more accurate to use the raw data, as
in the second variant.

C. The correlation effect

The second question that we analyze in section IV is the
correlation effect (B.).

The method for analyzing the effect of an anomaly on
the other measurement nodes (smart meters) can be either
simulated or used in a real test scenario and is represented by
a fault sensitivity matrix, where the discrepancies are given by
the deviation of the data set from the cluster centroids.

Considering the case of large scale networks that would
benefit from a distributed approach, we propose a general
method for anomaly detection across the entire network, which
will be described in a future paper. So far, we define the
anomaly detection algorithm for a given data source, such as
AMR data from smart meters, and we calculate the correlation
between the possible anomalies in the network. This approach
can be generalized by a multiple-stage clustering and anomaly
detection. This method is also known as a type of hierarchical
clustering and is described in [14]. Considering this scenario,
the anomaly detection algorithm uses the data from the current
stage as the data set (cluster centroids for the current stage,
raw data for the first stage) and the data from the higher stage
as the reference clusters. Each stage reveals a more detailed
view of the anomalies, from the top level to the individual
consumer level. Moreover, this approach shows an overview of
the sub-networks that are part of the water distribution system.

D. Anomaly isolation

We start by defining a general method, providing a general
solution to the third question (C.). We propose a method to
isolate the anomaly when it is detected, so that the clusters are
not affected. As part of a decision support system, the anomaly
is signaled to the operator, with an associated time limit
for confirmation. The subsequent measurements are clustered
separately in the anomaly clustering buffer.

As the anomaly can be an actual change in the system
configuration (e.g. an increase in the number of consumers),
the operator can confirm the anomaly or dismiss it as a
normal state. In the case of a confirmed anomaly, when the
cause is resolved and the system returns to the normal state,
the additional clusters generated during this time frame are
discarded. On the other hand, if the anomaly is dismissed
as a normal state, the additional clusters are merged with
the initial clusters and the clustering algorithm continues.
This allows for a continuous update of the consumer demand
patterns as part of a normal evolution, while not being affected
by transient anomalies. Therefore, the estimation accuracy
for both clustering and anomaly detection is improved

by removing the cross-causality effect between the two
algorithms.

These two scenarios can be visualized in Figure 1. The final
decision, regarding the confirmation of the anomaly, can be
the task of the operator, which can also be a higher level
DSS (decision support system) that can learn from previous
events. If the anomaly is confirmed, the operator delegates the
task of fixing the problem and when the problem is fixed,
the operator signals this to the DSS that will then dismiss the
clusters generated during this time frame. If the anomaly is
dismissed as normal behavior, the operator signals this to the
DSS that will then aggregate the clusters.

Considering this scenario of a procedure defined for a single
anomaly, it is possible to identify multiple anomalies that were
in fact caused by the same problem. Therefore, it is important
to evaluate the effect of an anomaly on other measurement
nodes (smart meters) so that the problem can be accurately
identified. This is further analyzed in section IV.

IV. RESULTS

In this section, we answer the first two questions defined in
section III by implementing the scenarios for a measurement
data set provided by a real water distribution system. The
implementation is done using Python and the scikit-learn
library [15].

For the real-time clustering, we defined a particular
implementation that updates the cluster centroids for each new
data set (i.e. the measurements for the next day). There are
two scenarios that are used, one with the original data set,
and the second one with an additive constant deviation as the
anomaly scenario.

A. The transient effect

The transient effect i.e. the amount of time until the effect
of the anomaly is transposed in the cluster centroids, is the
first question proposed in this paper, that aims to provide a
measure for tuning the parameters of the buffering method in
the anomaly detection system.

We analyze the effect of an anomaly in terms of standard
deviation from the normal state, over a time frame of multiple
days. Having a data set with measurements, we simulate a
constant additive deviation, starting with a particular sample,
and we compare the clusters obtained from the normal data
set to the clusters obtained from the modified data set.
The simulation model is described in III-A. We defined the
dynamic model using first order filters for network sections,
according to the associated physical dimensions. Therefore,
the transient response is that of a first order system for the
simulated flow in the corresponding network segments.

We subtract the two data sets, and the resulting characteristic
is, accordingly, that of a first order system, as shown in Figure
2. The effect can be interpreted a transient response, with the
settling time of less than 3 days i.e. the time until the output
becomes stable.

As the sampling time of the clustering algorithm is given
by the daily measurements, the system has a fast transient



response. Therefore, the clustering can be done by using a
buffer, containing the clusters obtained using the latest data,
that is analyzed in real time (i.e. at every sample) and is
later added to the cluster centroids (e.g. every 3 days or the
actual settling time for the particular scenario). The buffer
is compared to the normal conditions, to check for unusual
behavior, and the DSS can provide the required input, that is to
add the buffer to the normal clusters or not, while the operator
can override this decision, after thorough field inspection.

Therefore, we can propose, in this case, a 3 day time limit
to evaluate the anomaly, before the clusters are automatically
assigned to the normal conditions. If the anomaly is dismissed
as normal state, the process can be finalized before the
proposed deadline, and this is recommended so that the
clustering in normal conditions is up to date. The time limit
is proposed with the same considerations.

Figure 2. Transient effect

B. The correlation effect

The cross-correlation between the measurements in multiple
nodes can be simulated by using a hydraulic model. In the
same way, the cross-causality between the detected anomalies
as a deviation between the two scenarios can be estimated.

In the first scenario we consider a demand node that is
assigned the measured data and the other nodes that are
assigned the estimated data from the hydraulic model. The
clustering algorithm receives the data from all the nodes and
generates clusters for each node, that represent the normal
conditions. In the second scenario, we add the constant
additional demand to the measured data and observe the effect
on clusters obtained using the entire data set.

For each node, we consider the steady-state deviation (i.e.
the maximum deviation within the simulation time frame)
as the measure of non-similarity between the two scenarios.
The method for calculating this measure that we used in this
experiment consists in initial subtraction of the estimated data
from the two scenarios (3.B.).

By using this method for simulating an anomaly in each
of the measurement nodes, we obtain a fault sensitivity
matrix, that shows the effect of each anomaly on the entire
measurement data set as described in [12]. Therefore, this
effect can be simulated and the overall sensitivity of the
network can be estimated in advance. The results of this

network analysis can be used to predict the most appropriate
cause of an anomaly, from a range of possible causes.

In the proposed test scenario, we consider the network
represented in Figure 3. The parameters are given as pressures
at the supply nodes and the flow at the consumer node
that is assigned the real measurement data set. The demands
associated to the other consumer nodes are considered
constant. The real value is not known in the simulation
as it would be available in real-life scenarios through
measurements. It is not necessary though, as we are interested
in the actual deviation that we obtain by simulating different
anomaly scenarios and not the absolute values.

Figure 3. Network representation

Therefore, the supply pressure is constant and the demand in
one of the demand nodes is given from the measurement data
set. The other parameters are calculated from the model. By
running this simulation over a given time frame and running
the clustering algorithm on the data, we obtain the patterns for
each demand node.

The standard deviation is used as a measure of discrepancy
in the two scenarios. Therefore, for a given demand node there
is a scalar value that is added to the fault sensitivity matrix for
the particular node (column) for the simulated anomaly node
(row).

By simulating the anomaly in each of the nodes and using
the method described above, the fault sensitivity matrix is
generated. The colormap representation shown in Figure 4
represents an overview of the network in terms of overall
sensitivity to anomalies. The particular test scenarios are
shown as blue dots and the higher sensitivity is shown
in yellow. The sensitivity along the network segments is
estimated by interpolation of the real measurement points, so
that it is possible to visualize the effects in multiple locations
between the actual measurement nodes.

The multiple effect of real anomalies on the measured (in
this case simulated) parameters is a source of uncertainty that
is highlighted by this method. Therefore, there can be multiple
nodes that show a discrepancy in the measured parameters in
the case of a particular anomaly.



Figure 4. Network overall sensitivity

As expected, the highest sensitivity is generally obtained
when the anomaly is on the same node. In this particular
experiment, considering the case of a simulated anomaly in
the second node, the effects are visible on nodes 3 and 4 as
well. If we consider that a fault can appear along the pipe, in
between the measurement nodes, then the uncertainty can be
higher in finding the exact source of the problem. Therefore,
a more detailed analysis, that simulates leaks along the pipes
as well, can be useful.

V. CONCLUSION

In this paper, a method for fault sensitivity analysis
in a water distribution system is combined with Machine
Learning algorithms for data clustering and anomaly detection.
The results validate the method for estimating the overall
sensitivity to leaks using the cluster similarity measure
between the normal state and the anomaly scenario. The
method provides an insight for leak detection capabilities
within a given network topology and allows for increasing the
location accuracy in a decision support system. The effect of
an anomaly on the data clustering algorithm is analyzed from
a real-time perspective by measuring the transient response of
the system. Starting with this result, a strategy is provided so
that the clustering and anomaly detection methods can be used,
both simultaneously and independently as part of a decision
support system for water networks. The task of the operator
for validation of provided insights on the state of the system
can be delegated to a higher-level decision support system
that keeps track of the breakdown history and implements
a Machine Learning strategy as well. The method can be
extended in the case of multiple-layer, hierarchical networks
providing a separation of concerns with a corresponding
amount of detail. The experimental scenarios described in this
paper represent a progressive approach to the problem of fault
sensitivity analysis for anomaly detection in water distribution
systems.

ACKNOWLEDGEMENT

We are thankful to the PN III Program P3 European
and International Cooperation, UEFISCDI, that supported the
research activity and part of the presentation in conference,
as well as to the H2020 Twinning Program, that partially
supported the publication under the 690900 project -
Data4Water

REFERENCES

[1] M. Umar and W. Uhl, “Integrative review of decentralized and local
water management concepts as part of smart cities (lowasmart),” Norsk
institutt for vannforskning, Tech. Rep., 2016.

[2] O. Vermesan and P. Friess, Internet of Things - Converging Technologies
for Smart Environments and Integrated Ecosystems. River Publishers,
2015.

[3] M. Moglia, S. Burn, and S. Meddings, “Decision support system for
water pipeline renewal prioritisation,” in ITcon Vol. 11, Special issue
Decision Support Systems for Infrastructure Management, vol. 11, 2006,
pp. 237–256.

[4] A. L. N. Fred and A. K. Jain, “Data clustering using evidence
accumulation,” in Object recognition supported by user interaction for
service robots, vol. 4, 2002, pp. 276–280 vol.4.

[5] D. García, D. Gonzalez, J. Quevedo, V. Puig, and J. Saludes, “Clustering
and classification of aggregated smart meter data to better understand
how demand patterns relate to customer type,” Universitat Politècnica
de Catalunya (UPC), Tech. Rep., 2015.

[6] Oracle and DataScience.com. Introduction to anomaly
detection. [Online]. Available: https://www.datascience.com/blog/
python-anomaly-detection

[7] C. Lupu, D. Chirita, S. Iftimie, and R. Miclaus, “Consideration on
leak/fault detection system in mass transfer networks,” in Energy
Procedia, vol. 112, March 2017, pp. 58–66.

[8] R. Isermann, “Process fault detection based on modeling and estimation
methods—a survey,” in Automatica, vol. 20, no. 4, July 1984, pp.
384–404.

[9] N.C. Turner (Ferranti Ltd.), “Hardware and software techniques for
pipeline integrity and leak detection monitoring,” in Society of Petroleum
Engineers, 1991.

[10] G. Geiger, “Principles of leak detection,” in Fundamentals of leak
detection. KROHNE oil and gas, 2005.

[11] S. Oven, “Leak detection in pipelines by the use of state and
parameter estimation, master thesis,” Norwegian University of Science
and Technology, Department of Engineering Cybernetics, Tech. Rep.,
January 2014.

[12] A. Predescu, M. Mocanu, and C. Lupu, “Modeling the effects of leaks
on measured parameters in a water distribution system,” in 2017 21st
International Conference on Control Systems and Computer Science
(CSCS), May 2017, pp. 585–590.

[13] P. Nader, P. Honeine, and P. Beauseroy, “Detection of cyberattacks in a
water distribution system using machine learning techniques,” in 2016
Sixth International Conference on Digital Information Processing and
Communications (ICDIPC), April 2016, pp. 25–30.

[14] A. Predescu, M. Mocanu, and C. Lupu, “A multiple-layer clustering
method for real-time decision support in a water distribution system,”
in 2018 21st International Conference on Business Information Systems
(BIS), July 2018.

[15] scikit-learn developers (BSD License). scikit-learn. [Online]. Available:
http://scikit-learn.org/stable/


