EdgeMQ: Towards a Message Queuing Processing
System for Cloud-Edge Computing

(Use Cases on Water and Forest Monitoring)

Ton Dorinel Filip*, Bogdan Ghita*, Florin Pop*! George-Valentin Iordache*, Catalin Negru*, and Ciprian Dobre*
*Computer Science Department, University Politehnica of Bucharest, Romania
TNational Institute for Research and Development in Informatics (ICI), Bucharest, Romania

Abstract—With the increase of computational enabled devices
spread around us, improving the efficiency of our Cloud-based
software solutions frequently led us to use the closest available
resources and many real-time processes cannot rely on traditional
cloud architectures for all of theirs processing tasks anymore.
This paper proposes a Cloud-Edge data processing architecture
covering both real-time and batch processing models. We design
our solution as a general architecture and propose an implemen-
tation schema using RabbitMQ as a queuing engine. Two use-
cases are considered: one refers to monitoring a forest and the
other consider water monitoring and management. Those scenar-
ios include both batch and real-time processing components and
they can be mapped on the proposed architecture. We describe a
methodology for performance evaluation and give experimental
results for using RabbitMQ in a Set-Top Box environment. Using
Docker containers with limited resources, we obtained a message
rate of 4k messages per second for 1KB sized messages.

Index Terms—Edge Computing, Cloud Computing, Message
Queuing System, Real-Time Processing, Batch Processing

I. INTRODUCTION

Edge computing is a new computing paradigm where com-
putation is performed at the edge of the network on devices
with limited storage and computing capabilities, called set-
top boxes (STB) [1]. These STBs are easy to be installed,
configured and used in different environments, but the problem
of data processing using tools deployed in Clouds is still an
open research issue.

An important challenge comes from data streams produced
by mobile devices and sensors used in environmental monitor-
ing (like water resources, forests), traffic management or video
surveillance [2]. It is oriented on how to improve response time
for dedicated applications by reducing latency and network
traffic. One solution is to process data locally, instead of
transferring it to the Cloud, in a synchronized mode with
global storage.

It is forecast that by 2018, 1/3 of population will have a
mobile device. Also, by 2020, 43 trillion gigabytes of data
will be generated at global level [3]. The digital transformation
leads to an explosion of data traffic to Cloud data-centers. So,
using machines that are one hop away in the network, data
traffic can be reduced significantly or it can be distributed
optimally.

For distributed applications, with real-time constraints, the
Cloud Computing model is not efficient anymore [4]. In

order to improve the quality of service for these applications,
processing and storage of data needs to be close to the data
source, to be aware of context and to deal with complex event
handling. Moreover, real-time applications need a response
time in the order of milliseconds (25ms to 50ms) [5], which is
an important challenge for SLA negotiation. Cloud processing
adds a significant latency because of data transfer. The round
trip time (RTT) can exceed by far the response time for real-
time applications in case of large distances. For instance, RTT
between Canberra and Berkley is around 175ms [6].

In this paper we discuss about a novel hybrid system for
cloud-edge computing model.

This paper is structured as follows: Section I contains a
short introduction related to the edge computing paradigm
and message queuing processing. In Section II we present
relevant papers related to the field of edge computing. Section
III presents our proposed solution. Section IV contains two
use-cases and finally in Section V we present the conclusions
of this paper and future work.

II. RELATED-WORK

Considering the evolution of Software Defined Networks
(SDN5s) and Internet of Things (IoT), the problem of increasing
the efficiency of using available local or cloud resources
frequently asks to reach the closest available computational
resources and different solutions aim to increase the level of
usage for the less visible resources, including Set-Top boxes
and other devices.

A solution for increasing the load balancing in hetero-
geneous systems is [7] which proposes a new model for
scheduling microservices over Cloud-Edge environments and
present a microservice oriented scheduling architecture for IoT
applications that emphasis the importance of using less general
purpose devices. They also offer an evaluation of different
scheduling algorithms for this type of scenarios.

A good compendium about Cloud-Edge is [1] which
presents the problems that should be taken into account
for a general Cloud-Edge system and provides insights for
different services. The set of discussed problems includes pro-
grammability, naming, data abstraction, service management
and security and it gets applied for multiple use-cases like
cloud-offloading, video-analytics and smart homes / cities [8].

In [9] we find the description of a cloud-based message
broker system called FogMQ that aims to overcome the
limitations of conventional systems. It enables autonomous
discovery, self-deployment, and on-line migration of message
brokers across heterogeneous cloud platforms.

RabbitMQ [10] is a message broker software that allows
distributed applications to share data using common protocols
or to queue jobs for processing by distributed workers. As an
Open Source solution it is very flexible and convenient to use.

Water and forest monitoring are subjects of great importance
that might take advantages from using computational resources
with different (far-close) locality.

Important aspects for designing a water quality monitoring
system are presented in [11], which reviews current remote
real-time monitoring application from different points of view,
some of them being concentrated to link between their design
and advancements in telemetry and computing technologies.

III. PROPOSED SOLUTION

A. Required Services

In this section we describe the main goals in designing our
Cloud-Edge architecture which should offer multiple services
for our use-cases. These services can be split in multiple
categories:

o Queuing services - the services that allow a user-agent
to push, check and manage offloaded tasks. This kind
of services can be described as a system that offers a
reliable way of managing message-passing. Sometimes
they can be extended to offer messaging to processing
linking features like RPC;

« Networking services - the features that enable a device
to communicate with and register itself for discovering,
managing and roaming purposes;

o Task Scheduling - refers to finding a task — machine
assignation that optimizes different goal functions (e.g.
power consumption, latency, cost). If we consider a
dynamic physical architecture this feature also includes
a provisioning part that deals with the deployment of
different resources on demand;

o Network Storage - includes the hardware (storage de-
vices) and software components (protocols and drivers)
that allow an user-agent to remotely store and retrieve
data to/from a network attached device;

« Remote Processing Services - the services that manage
execution of the offloaded tasks.

Considering different problems from the categories above,
we aim to provide a solution that is able to: (i) connect
different devices to the network; (ii) offer task offloading
support based on an hierarchical queuing model; (iii) reduce
networking latency for mobile devices using an access network
based on set-top boxes; (iv) optimize processing costs and
performance using an hierarchical queuing model that uses
a mix of local, Edge (based on set-top-boxes) and Cloud
computational resources.

As required by our use-case scenarios we consider the
following architecture for a collection of heterogeneous user-
agents and a wide variety of applications that consist in both
batch and real-time processing tasks. A batch job is a type
of task that might require a significant amount of time and/or
resources in order to be performed and it is not required to be
finished immediately. In contrast, the result of a real-time job
is expected to be received in a very short amount of time in
order to be relevant.

B. Architecture

In Figure 1 we present our proposed architecture that is
organized in 3 hierarchical levels which provide services to
applications.

In the left side of Figure 1, we present the components of
the solution, while the right side presents the corresponding
services for each of these levels. For the application level, the
figure shows some important components of the application
(on the left side) and some examples of applications (on the
right side).

The first level from the bottom is the User-Agent level
which consists in user-agents (e.g. devices, terminal, external
services) that are connected to the processing architecture.
They have both generic and use-case specific capabilities.

For example, considering the use-case of creating an archi-
tecture for smart-robots, user-agents are single board comput-
ers that connect a set of sensors and actuators to an embedded
platform. Even though they might be considered IoT devices,
we construct our solution considering that they might be
directly connected to the Internet, but get connected to the
rest of the architecture by local communication to the next
level.

The second level of our architecture is represented by the
Edge-Processing Level. This level contains a heterogeneous
set of set-top boxes. They are computational enabled devices
that are likely to be connected to the Internet and offer a
considerable amount of processing power. This level serves
as network access level for devices and offers task offloading
(remote processing power) for the connected devices. Multiple
queues are hosted by this level. Depending on the kind of task
that it gets or on the scheduling decision, the software on this
level may decide to send the tasks to the public cloud on the
next level or process them on the Edge.

The third level is the one of Public/Traditional Cloud that
is available through the Internet. Disregarding the networking
role, the Cloud Level mainly differentiates itself from the
Edge level by communication latency. We expect that the
cost of communication to be more important when trying to
reach remote resources, but we aim to take advantage of more
powerful hardware that may be available on public clouds.

As presented on the right-side of Figure 1, each of these
3 levels offers certain services/features. Some of them are
common between different levels, while others are less likely
to be offered by some specific levels. We map those 2 types
of resources to the kinds of tasks that the user-agents can
generate. We expect the real-time processing task to be more

Persistent Data Batch
Remote/Internet Storage Alalysis Processing_|
Cloud Powerful Big-Data Data
(Azure, AWS, CPUs Scraping
Private)
Databases Remote
Control)
Cloud Level Cloud Services
=~ ~
dge Processing Level
3 Task Queues Processing Cache
Set-Top Set-Top
Box 1 Box 2 Networking Monitorization Cron-Jobs
Synchronization Real-Time
Y Offloading Edge Services
7 AV 1} 7 AN
/ \ ‘ I \ Local S
User Agent User Agent User Agent User Agent User Agent Processing ensors
1 2 3 4 M
User-Agent Level Task Buffers Acctuators Local Features
. . . Robotic Traffic Video
Algoritms Data-Flows Networking Required SLA Assitant E-Health Monitoring || Proceesing
Applications Level Application Examples

Fig. 1. Generic real-time scheduling system.

frequently scheduled on the Fog/Edge levels while the batch
ones are more likely to better fit on the public cloud.

C. Service Level Agreement (SLA)

Edge infrastructures connect to different devices such as
data acquisition systems, wireless sensors or smart meters
producing data in different formats and scales and most of
them refers to large volume of data that needs to be processed.
For example, it is necessary to transmit and analyze large
amounts of data efficiently to respond in real-time to the
devices connected to the edge computing platform.

A Service Level Agreement (SLA) is represented by a
contract between a customer and a provider that is designed
and it is functional when the customer requests and receives
from a given provider as a service of an operating edge
computing infrastructure to use or analyze the results provided
by some devices that connect to the edge computing infras-
tructure. Based on this definition we can define a SLA in edge
computing as a common contract between the customer and
the provider that has the purpose of verifying the functional
aspects (or parameters) of the communication between the
edge computing infrastructure and the devices connected to it.
The parameters of the SLA specify various characteristics of
the service with the purpose of assuring customer and provider
satisfaction.

Subsequently, we will describe the life-cycle of a SLA and
the parameters that characterize this type of SLA.

1) SLA Life-cycle: We can consider a SLA as being a
contract between the customer and the provider that defines
the functioning (both in terms of measuring and monitoring)

of the edge computing infrastructure. We can adapt the four
steps from [12], [13] to the case of a SLA contract for an edge
computing infrastructure as follows:

o SLA design. In this step, the service customers describe
the requirements they have in terms of SLA contracts
characteristics. Additionally, edge computing infrastruc-
ture service providers offer definitions of the SLA con-
tracts parameters.

e SLA selection. In this step, based on existing SLA
offerings by the edge computing infrastructure providers,
the edge computing infrastructure customer chooses the
SLA(s) that is (are) the most appropriate to the service
providers in terms of their characteristics. Additionally, a
negotiation between the service provider(s) and the ser-
vice customer(s) takes place with the purpose of having
a unique SLA.

e SLA monitoring. Now the service becomes operational
(it is started and provided to the customer). In this step
the edge computing infrastructure customer monitors,
measures and validates the edge computing infrastructure
parameters.

o SLA termination. In this step, one of the parts of the
contract decides to terminate the agreement because it
expires or it was violated by one of the parts [14].

2) SLA parameters: When referring to SLA between the
edge computing infrastructure customers and the edge com-
puting infrastructure providers, several parameters need to be
considered (see Table I).

In Table I [15] we define various SLA parameters that

TABLE I
SLA PARAMETERS THAT MEASURE THE PERFORMANCE OF AN EDGE
COMPUTING INFRASTRUCTURE SERVICE.

No Name Unit

1 Service availability Time

2 (Maximum) down-time Hours

3 Edge computing infrastructure failure rate ~ Number

4 Periods of operation Time

5 Latency times ms

6 Accessibility in case of problems Yes/No

7 Number and types of nodes Number and type

are very important when discussing about the contract that
characterizes the functionality of an edge computing infras-
tructure both from the perspective of a provider and from the
perspective of a customer. Next, each parameter of the edge
computing infrastructure that belongs to the SLA is presented.

One very important parameter when considering an edge
computing infrastructure service is the service availability.
In an environment prone to failures like an edge computing
infrastructure, different incidents might occur such as packet
loss, communication delay, very volatile bandwidth and so on.
During the malfunctioning of the edge computing infrastruc-
ture service we can consider the service unavailable to the
customer.

Another functional parameter when referring to an edge
computing infrastructure is the maximum down-time. A
down-time parameter is defined as planned or unplanned.
The planned down-time is defined as a period when usual
maintenance operations take place. In the case of an unplanned
down-time, several situations need to be considered such as
when the service is stopped due to the incorrect functioning of
the edge computing infrastructure because of system failures
(hardware failures) or of the communication failures (network
failures). These failures can be detected by using predictive
monitoring.

Edge computing infrastructure failure rate parameter
defines the malfunctioning rate of the edge computing infras-
tructure and is defined by the number of failures per unit of
time.

The periods of operation parameter defines the opera-
tional period such as during a day, a month or even a year.

The latency times parameter represents a period of the edge
computing infrastructure defined by the time it takes a bit of
data to travel from a source node to destination or sink [16]
node.

The accessibility parameter has two possible values: “Yes”
or “No”. A “Yes” value denotes the fact that the provider
allows the customer to access and modify the edge com-
puting infrastructure. The “No” value denotes the fact that
the customer doesn’t have access to the edge computing
infrastructure.

The number and type of nodes parameters defines the
type and the number of monitoring nodes that were specified
in the SLA contract.

IV. EXPERIMENTAL EVALUATION

A. Implementation proposal

In this section we describe a proof of concept implementa-
tion proposal for our model, based on RabbitMQ as a queuing
engine for task processing. Figure 2 shows the high level
architecture schema for our system.

RabbitMQ serves as the main communication interface be-
tween the three levels of our architecture. User-agents generate
and offload tasks by publishing messages to the queues in
the Edge Processing Level. Set-top boxes consume tasks from
these queues and decide whether to process them or further
offload to the Cloud by publishing messages to the queues
in the Cloud Level. Finally, processing units in the Cloud
consume the messages from the queues and process the tasks.

Our points of interest are the Application and Edge Process-
ing levels. As these two levels are split into multiple local area
networks, the user-agents offload tasks to the set-top boxes in
the same LAN.

Each set-top box runs a RabbitMQ service and therefore it
becomes a RabbitMQ node. One or more set-top boxes that
are in the same LAN form a RabbitMQ cluster, thus each
LAN has its own RabbitMQ cluster. Being in a cluster, the
set-top boxes in the same LAN share the same queues, which
means that they have the same image of each queue. The Cloud
Level it can either be a single RabbitMQ cluster or multiple
geographically distributed clusters.

A user-agent is a RabbitMQ client. It connects to any set-
top box (RabbitMQ node) in the LAN and offloads tasks
the the Edge Processing Level by publishing messages to
the appropriate queue. There are two types of queues: batch
queues and real-time queues. The user agents publish tasks in
the corresponding queue, depending on the type of the task.

In order to be able to process the tasks sent by user agents,
each set-top Box also runs a RabbitMQ client which consumes
messages from the queues. When a set-top box receives a
message from the real-time queue it can either process it or
publish it to the Cloud RabbitMQ cluster. The tasks that are
published to the Cloud Level queues get processed in the
Cloud. If the result needs to get back to the user-agent, it
is received by the set-top box which published it and then
forwarded to the user-agent.

The user-agents are free to connect to any set-top box.
Since queues are shared in the LAN cluster, if one set-top box
becomes unavailable, the user-agents can connect to other set-
top boxes. The tasks published on the affected set-top box are
not lost and get processed by the other nodes, as allowed by
RabbitMQ shared queues.

In respect to load balancing, the set-top boxes processing
units are balanced in terms of job allocation. This is done by
making use of RabbitMQ direct exchanges. The RabbitMQ
broker distributes jobs to the set-top boxes consumers in
a round robin manner, based on their prefetch count (i.e.
here, the number of jobs that the set-top box can process
simultaneously). For the RabbitMQ nodes we obtain high
availability by mirroring the queues. As nodes are grouped

RabbitMQ Cluster

-

RabbitMQ Cluster

@)
Real-Time Queue 2
S
—
—> Batch Queue %
Off/oad\ Set-Top Box 2 \
(0] C/OUQ'
RabbitMQ Server
Set-Top Box 1
RabbitMQ Client m
RabbitMQ Server . Q
Processing Component ®
RabbitMQ Client g 3
Q
Processing Component § o
o @
O Set-Top Box n a
—
RabbitMQ Server 2
o
Real-Time Queue RabbitMQ Client
/ Processing Component
Batch Queue /

User Agent 2 c
(2}
User Agent 1 RabbitMQ Client 9;
RabbitMQ Client ?
—
®
User Agent n P

RabbitMQ Client

Fig. 2. Architecture schema using RabbitMQ.

in a RabbitMQ cluster, all requests (publish/consume) for a
specific queue are directed to the node on which the queue
resides. If that node fails, a new master for the queue will be
elected.

B. RabbitMQ Evaluation

In order to test how the RabbitMQ system would behave
on set-top boxes and what performance levels it could reach,
we simulate a scenario close to our architecture.

Considering the hardware capabilities of a set-top box, we
deploy a RabbitMQ instance inside a Docker container with
resources limited to 1 CPU and 512MB of RAM. This would
be the equivalent of a set-top box. The user agents being
RabbitMQ consumers and producers, are simulated by Python

processes that publish and consume messages, also running
in Docker containers. In order to measure the performance
of the system we use a monitoring component which gathers
system resources statistics using the API provided by Docker
and RabbitMQ metrics by using the RabbitMQ management
plug-in.

The main metric that we are interested in is the throughput
of the RabbitMQ node given the limited resources of a set-
top box. The throughput is measured in number of published
and delivered messages per unit of time. To determine the
limit of the system we create the following scenario: the
producers publish an increasing number of messages (each
of size 1KB) per second, starting from 10, 20, 30 and so on,
while the consumers consume messages as they are delivered

by RabbitMQ.

The results of the simulation are presented in Figure 3. The
RabbitMQ system manages to receive and deliver messages at
a maximum rate of 4K messages per second, being limited by
the CPU, while memory usage remain rather constant at 40%
of its capacity.

N
o
o
o
L

3000 A

2000 1

1000 A

Message rate [count/sec]

o
L

10.0 125 15.0 17.5 20.0

1001 — cpu
804 — RAM
60

40 A

o
o
N
u
(S
o
~
w

20 A

System resource usage [%]

10.0 125 15.0 17.5 20.0

Time [minutes]

0.0 2.5 5.0 7.5

Fig. 3. Experimental results of the proposed system.

In addition to these promising results, we can leverage
RabbitMQ for solving issues like scalability, load-balancing,
fault tolerance and redundancy by making use of features
that ensure reliability: persistent messages, durable queues and
exchanges, message acknowledgments and clustering.

V. USE-CASES
A. Water monitoring

Monitoring of Water resources such as water distribution
systems in smart cities implies large volume of heterogeneous
information (e.g. spatial, sensor and multimedia data) with
temporal dimension. In order to respond efficiently and to alert
possible affected population in case of pollution accidents or to
damages in the distribution system, we need to acquire, store,
transmit and analyze data with small response times. Also, we
need to perform simple data analytics on the data [17].

Usually, the monitoring systems for water distribution con-
sist of a large base of sensors that record and transmit data
for storage and processing. Using a traditional centralized
processing model where data is processed in a central location
is not efficient anymore due to the increased processing times.
So, these systems need fast, scalable, reliable and efficient
processing model, in order to achieve cost reduction, faster
and better decision making in case of accidents or failures in
the system.

By using a hybrid model such as the cloud-edge computing
model, we can achieve better response times. Data processing
tasks can be done locally on set-top boxes. Furthermore, long-
term archive data can be stored in the Cloud and can be pro-
cessed for complex analytics task such as system optimization.

B. Forest monitoring

Another use case that is suitable for cloud-edge computing
model is forest monitoring. Monitoring areas covered with
woody vegetation is a topic of high relevance both in Romania
and at European/global level. The development of efficient
and trustworthy services and applications is of great interest,
triggering real-time processing challenges, efficient storage
and fast retrieval of data.

Romania’s forestry fund has an area of 6,529 thousand
hectares, representing 27.3% of the country’s territory. The
total forest footprint is estimated at more than 1.340 million
m3. Remote monitoring of forests, using satellite imagery, is
an alternative that has been used more often in recent years
for ground and air monitoring. Ground monitoring is limited
by its discrete / discontinuous character (measurements or
observations can be obtained in a small number of points)
and the difficulty and cost of reaching hard-to-reach or remote
areas [18] [19]. In turn, aerial monitoring (using airplanes,
drones), although it allows quasi-continuous data (in the sense
that it can take pictures along flight paths, which then have
to be assembled in a larger scene), increases the degree of
fragmentation of the spatial puzzle and produces an increased
asynchrony between fragments / areas. If the superiority of
remote monitoring can be questionable at individual scene
levels, it is incontestable to process and analyze time series.
The ability to analyze sets of large-scale spatial images taken
at regular intervals from the same or more sensors, usually at
the same time of day, over a long period of time, creates the
premises for observing subtle phenomena, which manifests on
large areas or in multiple local outbreaks [20] [21].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented the design of Cloud-Edge data
processing architecture covering both real-time and batch
processing scenarios.

Our work also covers the primary design for implementing
such a system using RabbitMQ as message passing engine and
offers some an objective evaluation of performance limits on
running RabbitMQ on a User-Agent to Set-top box environ-
ment.

In Section III-C2 we presented some SLA parameters that
should be used for early risk analysis of our proposed solution.

As future work we aim to:

« Implement a one or more of the described use-cases using
RabbitMQ as a queuing engine for task processing;

o Evaluate different performance metrics against each of
the proposes use-case;

« Integrate the idea presented in this paper in one (or more)
of our supporting projects.

In the context of the current SI, our paper has added value
in giving an overview of the requirements around designing
a processing architecture for a Cloud-Edge infrastructure and
offers a multiple-paradigm solution for designing a reliable
task-scheduling architecture that uses both Edge and Cloud

resources and linking it to an existing technology that mights
cover important aspects of the system.

ACKNOWLEDGMENT

The research presented in this paper is supported by the
following projects: DatadWater - H2020 Twinning project
(H2020-TWINN-2015,CSA-690900), MONROE - Toff project
(H2020 No 644399), NETIO-ForestMon (53/05.09.2016,
SMIS2014+ 105976), SPERO (PN-III-P2-2.1-SOL-2016-03-
0046, 3S0l/2017) and ROBIN (PN-III-P1-1.2-PCCDI-2017-
0734).

We would like to thank the reviewers for their time and
expertise, constructive comments and valuable insight.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, 2016.

[2] C. Negru, F. Pop, M. Mocanu, and V. Cristea, “A unified approach to
data modeling and management in big data era,” in Data Science and
Big Data Computing. Springer, 2016, pp. 95-116.

[3] S. Curtis, “Quarter of the world will be using smartphones in 2016,”
The Telegraph, vol. 11, 2014.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, 1. Stoica er al., “A view of cloud
computing,” Communications of the ACM, vol. 53, no. 4, pp. 50-58,
2010.

[5] A. Biondi, M. Di Natale, and G. Buttazzo, “Response-time analysis for
real-time tasks in engine control applications,” in Proceedings of the
ACM/IEEE Sixth International Conference on Cyber-Physical Systems.
ACM, 2015, pp. 120-129.

[6] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
vol. 8, no. 4, 2009.

[7]1 1. D. Filip, F. Pop, C. Serbanescu, and C. Choi, “Microservices schedul-
ing model over heterogeneous cloud-edge environments as support for
iot applications,” IEEE Internet of Things Journal, vol. PP, no. 99, pp.
1-1, 2018.

[8] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis,
and G. Mastorakis, “Drop computing: Ad-hoc dynamic collaborative
computing,” Future Generation Computer Systems, 2018.

[9] S. Abdelwahab and B. Hamdaoui, “Fogmq: A message broker system for
enabling distributed, internet-scale iot applications over heterogeneous
cloud platforms,” arXiv preprint arXiv:1610.00620, 2016.

[10] A. Videla and J. J. Williams, RabbitMQ in action: distributed messaging
for everyone. Manning, 2012.

[11] H. B. Glasgow, J. M. Burkholder, R. E. Reed, A. J. Lewitus, and J. E.
Kleinman, “Real-time remote monitoring of water quality: a review
of current applications, and advancements in sensor, telemetry, and
computing technologies,” Journal of Experimental Marine Biology and
Ecology, vol. 300, no. 1-2, pp. 409-448, 2004.

[12] G.-V.Iordache, F. Pop, C. Esposito, and A. Castiglione, “Selection-based
scheduling algorithms under service level agreement constraints,” in
Control Systems and Computer Science (CSCS), 2017 21st International
Conference on. 1EEE, 2017, pp. 134-140.

[13] G. V. Iordache, M. S. Boboila, F. Pop, C. Stratan, and V. Cristea, “A
decentralized strategy for genetic scheduling in heterogeneous environ-
ments,” in OTM Confederated International Conferences” On the Move
to Meaningful Internet Systems”. Springer, 2006, pp. 1234-1251.

[14] L. Wu, R. Buyya et al., “Service level agreement (sla) in utility
computing systems,” IGI Global, vol. 15, 2012.

[15] G. IORDACHE, A. PASCHKE, M. MOCANU, and C. NEGRU,
“Service level agreement characteristics of monitoring wireless sensor
networks for water resource management (slasdwater),” Studies in In-
formatics and Control, vol. 26, no. 4, pp. 379-386, 2017.

[16] “Network delay (wikipedia webiste),” https://en.wikipedia.org/wiki/
Network_delay, (Accessed on 01/13/2018).

[17] C. Negru, F. Pop, M. Mocanu, and V. Cristea, “Storage solution of
spatial-temporal data for water monitoring infrastructures used in smart
cities,” in Control Systems and Computer Science (CSCS), 2017 21st
International Conference on. 1EEE, 2017, pp. 617-621.

[18] O. Muresan, F. Pop, D. Gorgan, and V. Cristea, “Satellite image process-
ing applications in mediogrid,” in Parallel and Distributed Computing,
2006. ISPDC’06. The Fifth International Symposium on. 1EEE, 2006,
pp- 253-262.

[19] K. Shimizu, T. Ota, N. Mizoue, and S. Yoshida, “Forest monitoring using
time series satellite images and its applications to tropical forests,” Nihon
Ringakkai Shi/Journal of the Japanese Forestry Society, vol. 98, no. 2,
pp- 79-89, 2016.

[20] S. Amin and M. P. Goldstein, Data against natural disasters: establish-
ing effective systems for relief, recovery, and reconstruction. ~ World
Bank Publications, 2008.

[21] E. B. Bektas, D. Mihon, V. Colceriu, K. Allenbach, C. Goksel, A. O.
Dogru, G. Giuliani, and D. Gorgan, “Remotely sensed data processing
on grids by using greenland web based platform,” International Journal
of Advanced Computer Science and Applications, vol. 3, no. 3, pp. 58—
65, 2013.

