
Reinforcement Learning for Water Management 

1 Introduction 

Scarcity of water and the increasing awareness of the need to save energy in providing 
good quality water to increasing numbers are driving the search for new ways to save 
water as well as energy and improve the financials of water utilities. At the same time 
the increasing “digitalization” of urban Water Distribution Networks (WDNs) is gen-
erating huge amounts of data from flow/pressure sensors and smart metering of house-
hold consumption and enabling new ways to achieve more efficient operations. Sequen-
tial decision models are offering an optimization framework more suitable to capture 
the value hidden in real time data assets. More recently, a sequential optimization 
method based on Approximate Dynamic Programming (ADP) has been proposed, 
whose preliminary computational results demonstrate that this methodology can reduce 
the electricity expenses while keeping the water pressure in a controlled range and, at 
the same time, is able to effectively deal with the uncertainty on the water demand.  

 
1.1 Pump Scheduling Optimization 

Optimization of WDNs has been a very important field in the Operation Research com-
munity at least in the last 40 years and many tools from Mathematical Programming as 
well as metaheuristics have been proposed. An updated review on optimization of water 
distribution systems is given in [1], a very recent, wide and systematic survey where 
several classes of existing solutions including: linear programming, nonlinear program-
ming, dynamic programming, metamodeling, heuristics, and metaheuristics are deeply 
analysed and referenced. 

One of the major issues for water utilities is the excessive energy consumption due 
to non-optimal pumping scheduling, usually known as Pump Scheduling Optimization 
(PSO) problem. A pump schedule defines which pumps are to be operated and with 
which settings at different periods of the day. PSO must be performed by also consid-
ering operational constraints, such as: satisfying demand, keeping pressures within cer-
tain bounds to reduce leakage and the risk of pipe burst, and keeping reservoir levels 
within bounds to avoid overflow.  

One of the earliest approaches for PSO was based on Dynamic Programming (DP) 
[2]. However, since the number of states increases exponentially with the size of the 
WDN, this type of solutions has been usually considered impractical, due to the curse 
of dimensionality in DP: recently, [3] approximate methods has been proposed to over-
come the curse of dimensionality. 

A formulation closely related to DP is that based on a Markov Decision Process 
(MDP). In [4, 5], an MDP was used to model the PSO problem in the case of a simpli-
fied WDN with three water reservoirs. The disadvantage of using classical MDP is the 
need to control the size of the state space through coarser discretization, while a major 
advantage is that the solution provides full spectra of possible policies from whichever 
initial stage (i.e. defined through various discrete levels of reservoirs in the WDN). This 



is essentially a planning approach [6] that requires extensive simulations for building 
the state transition probability matrix. For instance, for each state-action pair in [5] 
more than a hundred random runs needed to be performed. A similar strategy was re-
cently proposed in [7, 8], where the MDP is generated through an exhaustive interaction 
with the hydraulic simulation software and DP is used to solve the PSO problem. 

An Approximate Dynamic Programming (ADP) framework to PSO, based on MDP 
models but without the requirement of complete knowledge of transitional dynamics, 
has been recently proposed in [9]. The basic idea is that, instead of generating the com-
plete MDP of the WDN behaviour – and then solve the PSO using DP – exploration 
(i.e. try pumps configurations not yet evaluated with respect to the current state of the 
WDN) and exploitation (i.e. exploit available knowledge acquired so far, relatively to 
the current state of the WDN) are alternated. Among ADP strategies, Q-Learning is 
specifically considered, a well-known algorithm in the Reinforcement Learning (RL) 
community. The proposed approach has been tested on a well-known benchmark 
WDN, namely Anytown, first proposed for PSO in [10].  

2 Markov Decision Processes  

MDPs are a powerful framework that can be applied to model a variety of sequential 
optimization problems in different fields [11]. It works in a sequential process of deci-
sion epochs by performing actions that change the state at the next decision epoch, 
accordingly to a transition probability function representing the dynamics of the sys-
tem, and that provides for the performed action [12]. Since the system is ongoing, the 
state of the system prior to next decision depends on the present decision/action. There-
fore, the goal is to identify, for each state, the action that produces the highest expected 
reward in a long-time horizon and that will result in the system performing optimally 
with respect to some predetermined performance criterion.  

In a formal way an MDP can be defined as a tuple < 𝑆,𝒜,𝒯,ℛ > where 	𝑆 is a set 
of discrete states, 𝒜	is a set of discrete actions, 𝒯	is a state transition function, and ℛ	is 
a reward function [6]. The set of discrete states is defined as the finite set 𝑆 =
{𝑠,, 𝑠-, … . , 𝑠01} where the size of the state space is 𝑁4. Each state consists in 𝑁5 state 
variables, such that 𝑠 = {𝜉,, 𝜉,, … . , , 𝜉07}. Thus, the set of discrete states has cardinal-
ity 𝑁4	and each state is composed by the tuple of 𝑁5	state variables, as follows: 

 
 𝑆 = 8𝑠,, … . , 𝑠019 = {:𝜉,,, … . , 𝜉,

07;, … , :𝜉01
, , … . , 𝜉01

07;}      (1) 
 
On the other hand, the actions allow for moving from one state to another. The ac-

tions set,	𝒜, can be defined as the union of all the subsets of allowed actions for every 
state 𝑠 of the state set 𝑆: 

  𝒜 =	⋃ 𝒜==∈4           (2) 
 
By applying an action 𝑎@ = 𝑎 in the state 𝑠@	 = 	𝑠 at time step t the system makes a 

transition to the new state 𝑠@A,	 = 	 𝑠B based on a probability distribution 𝒯 over the set 
of possible transitions: 



 
𝒯(𝑠, 𝑎, 𝑠B) = 𝑃(𝑠@A, = 𝑠B|𝑠@ = 𝑠, 𝑎@ = 𝑎)        (3) 

where:  
 

𝒯: 𝑆 ×𝒜 × 𝑆 → [0,1], ∑ 𝒯(𝑠, 𝑎, 𝑠B) = 1=B∈4        (4) 
 

and  
0 ≤ 𝒯(𝑠, 𝑎, 𝑠B) ≤ 1           (5) 

 
Finally, the reward function specifies a value received for performing the action 

𝑎@	 = 𝑎 in the state 𝑠@	 = 	𝑠	at time step t and is defined as: 
 

ℛ(𝑠, 𝑎, 𝑠′) = {𝑟@|𝑠@ = 𝑠, 𝑎@ = 𝑎, 𝑠@A, = 𝑠′}	 	 	 	  (6) 	
 

Where	ℛ: 𝑆 ×𝒜 × 𝑆 → ℝ: while a positive ℛ(𝑠, 𝑎, 𝑠′) may be regarded as a reward, 
a negative one can be considered a cost/punishment. 

Solving an MDP consists in finding a control policy π, which is defined as a mapping 
from states to actions, 𝜋:	𝑆 → 𝒜. Optimizing such policy corresponds to maximize the 
accumulated reward values received over a long-time horizon. To achieve this goal, the 
definition of value function or utility must be provided. The value function of a state 
𝑠@ = 	𝑠	at time step t under control policy π, denoted by 𝑉U(𝜎), is the expected return 
of rewards when starting in state s and by following, sequentially, the actions suggested 
by the policy π. The value function is therefore defined as: 

 
𝑉U(𝑠) = 𝔼U[∑ 𝛾Y ∙ 𝑟@AY|𝑠@ = 𝑠[

Y\] ]        (7) 
 
where 𝔼U is the expected value given by following policy π, and 𝛾 ∈ [0,1]	is a dis-

count factor that is used to balance current and future rewards. When 𝛾 is small the 
approach is said to be “myopic”, which means that it is only concerned about immediate 
rewards, while, when 𝛾 is large future rewards become also important. 

2.1 Dynamic Programming  

One fundamental property of a value function is that it satisfies the Bellman Equation 
[13], that allows to break a dynamic optimization problem into simpler sub-problems, 
and can be defined recursively as follows: 

 
𝑉U = 𝔼U{𝑟@ + 𝛾 ∙ 𝑟@A, + 𝛾- ∙ 𝑟@A- +	…	|𝑠@ = 𝑠} 

= 𝔼U{𝑟@ + 𝛾 ∙ 𝑉U(𝑠′)|𝑠@ = 𝑠, 𝑠@A, = 𝑠′}	      
    (8) 

= ℛ(𝑠, 𝜋(𝑠), 𝑠′) + 𝛾_𝒯(𝑠, 𝜋(𝑠), 𝑠′) ∙ 𝑉U(𝑠B)
=B∈4

 

 
An optimal policy, denoted by	𝜋∗, is such that 𝑉U∗(𝑠) ≥ 	𝑉U(𝑠)	for all 𝑠 ∈ 𝑆	and all 

policies π. Thus, the optimal value function can be evaluated as follows: 



 
𝑉∗(𝑠) = max

e∈𝒜
[ℛ(𝑠, 𝑎, 𝑠′) + 𝛾∑ 𝒯(𝑠, 𝑎, 𝑠′) ∙ 𝑉∗(𝑠B)=B∈4 ]   (9) 

 
 

Finally, the optimal policy 𝜋∗	consists in the optimal actions selected according to 
the optimal value function 𝑉∗	and it is summarized by: 

 
𝜋∗(𝑠) = argmax

e∈𝒜
[ℛ(𝑠, 𝑎, 𝑠′) + 𝛾 ∑ 𝒯(𝑠, 𝑎, 𝑠′) ∙ 𝑉∗(𝑠B)=B∈4 ]   (10) 

 
There are two algorithms to compute the optimal policy 𝜋∗ ∶ policy iteration [12] 

and value iteration [6]. The former computes the utility of all states and improves the 
policy in each iteration until actions convergence to an optimal policy; the latter com-
putes the expected utility of each state using the utilities of the neighbour states until 
the utilities for two consecutive steps are close enough. 

Finally, independently on the specific algorithm, the best action will be the one with 
the highest expected value based on possible next states resulting from taking that ac-
tion [14]. 

DP is also an effective approach for stochastic problems. The main difference is the 
need to model that information becomes available after the action a is performed, so 
uncertainty is both in next reached state 𝑠′ and in the reward. 

The deterministic form of the Bellman’s equation can be adapted to the stochastic 
case by simply replacing the (deterministic) transition matrix with a probability transi-
tion matrix: 

 
     𝑉∗(𝑠) = max

e∈𝒜
[ℛ(𝑠, 𝑎, 𝑠′) + 𝛾∑ ℙ(𝑠B|𝑠, 𝑎) ∙ 𝑉∗(𝑠B)=B∈4 ]     (11) 

 
this is also known as the standard form of the Bellman’s equation, used in almost 

every textbook on stochastic programming and dynamic programming.  
Finally, if expected value is used instead of the sum of probabilities, an equivalent 

form – namely the expectation form of the Bellman’s equation – is obtained, which is 
more appropriate for ADP: 

 
 𝑉∗(𝑠) = max

e∈𝒜
[ℛ(𝑠, 𝑎, 𝑠′) + 𝛾𝔼{𝑉(𝑠′)|𝑠}]       (12) 

2.2 Approximate Dynamic Programming  

ADP offers a powerful set of strategies for solving problems that are large as well as 
small but lacking a formal model, specifically the transition function. Most of relevant 
real-life problems belong to this class, also known as “information acquisition”, where 
performing an action is the only way to obtain a better estimate of its value and increas-
ing the knowledge about the system. While exact DP steps backward in time, compu-
ting the value function then used to produce optimal decisions, ADP steps forward in 
time, so an approximation of the value function updated and used to make decisions. 
Basically, going forward in time requires to alternate between: 

• randomly generating a sample of what might happen 



• making a decision about the action to perform.  

According to [15], sampling can be performed in three different ways: from real data 
(e.g. real physical processes), via computer-simulation or sampling from a known dis-
tribution. The main benefit of ADP algorithms is the ability to solve problems without 
knowing the underlying probability distribution, which is usually the case of working 
on real data. On the other hand, when a probability model is available Monte Carlo 
simulation can be used to generate samples; another possibility is to use software sim-
ulation of the physical system to perform sampling. However, physical systems are 
usually complex and difficult to be mathematically modelled and probability distribu-
tions and/or simulation are not available: the system’s behavior, in terms of transitions 
and reward, can only be observed by direct interaction, while optimization is performed 
accordingly to the expectation form of the Bellman’s equation (12). 

3 PSO as a learning problem 

The value function approximations known as “lookup tables” allow to store a value 
𝑉(𝑠) for each discrete state 𝑠 ∈ 𝑆, in the case of state value function. Another possibil-
ity is to use the state-action value function, which represents how good is to perform 
action a in state s, for every pair state-action. More specifically, an ADP strategy of the 
latter type is used, known as Q-learning, a popular approach used for problems with 
small state and action spaces, where we do not have a mathematical model for how the 
system evolves over time. 
 
3.1 Q-Learning 

Q-Learning takes its name from the variable 𝑄(𝑠, 𝑎) which is the value of being in the 
state 𝑠 ∈ 𝑆 and taking the action 𝑎 ∈ 𝒜 (i.e. state-action value function). 

Another typical classification adopted in the RL community is between “learning” 
and “planning” algorithms. While planning algorithms have access to a model/simula-
tor of the world, learning algorithms do not know anything about the system dynamics 
and must learn how to behave by direct experience with it (aka “environment”). Fur-
thermore, RL algorithms can be used to address optimization problems by exploiting a 
“learning-by-doing” paradigm in two different ways: 

• apply a planning algorithm after that a model of the world has been learned from 
experience (model-based approaches) 

• learn and apply a policy or value function directly from experience (model-free). 
 
Q-learning belongs to the latter category and, as an ADP algorithm, it works going 
forward in time, where the next action to perform is selected according to: 

𝑎k = argmax
e∈𝒜

𝑄lkm,(𝑠k, 𝑎)          

    (13) 
 



where 𝑄lk(𝑠k, 𝑎) is an estimation of the true value of 𝑄(𝑠, 𝑎) after 𝑛 iterations, 𝑎k 
and 𝑠k are, respectively, the action to choose and the state the system is at the 𝑛-th 
iteration. Thus, at iteration 𝑛 the estimation of 𝑄(𝑠, 𝑎) at iteration 𝑛 − 1, namely 
𝑄lkm,(𝑠B, 𝑎B), is used. 

After the action 𝑎k, an immediate reward 𝑟 is observed along with the new state 𝑠′, 
so the value of the state-action pair, 𝑄lk(𝑠k, 𝑎k), is updated consequently: 
 

𝑄lk(𝑠k, 𝑎k) = 𝑄lkm,(𝑠k, 𝑎k) + 𝛼 q𝑟 + 𝛾max
eB∈𝒜

𝑄lkm,(𝑠B, 𝑎B) −

𝑄lkm,(𝑠k, 𝑎k)r   (14) 
 

Where 𝛼 is the learning rate – which set how much the old estimate of the Q-value 
has to change depending on the observed state and reward – and 𝛾 is the discount factor 
as defined in the Bellman’s equation. Learning rate should be slightly decreased over 
time to guarantee convergence to the true Q-value. 

In this updating rule, the immediate reward plus the discounted max Q-value in the 
observed next state is what satisfies the Bellman equation (expectation form eq. 12). 

Selecting the action 𝑎k does not guarantee to reach an optimal solution: this is just 
one component of the Q-Learning algorithm which is basically associated to exploita-
tion (i.e. making decisions depending on the knowledge acquired so far). As already 
mentioned, the goal of Q-Learning is to alternate optimization – thus exploitation – 
with learning something new about the environment – thus exploration. This is exactly 
the behavior required to an ADP approach to step forward in time balancing between: 
(i) randomly generating a sample of what might happen (exploration) and (ii) making 
a decision about the action to perform (exploitation). 

In Q-Learning a typical strategy to manage this trade-off is known as 𝜀-greedy pol-
icy, where the action 𝑎k is randomly selected among all the possible actions, with prob-
ability 𝜀, and “greedily” (according to eq. 13), with probability 1-	𝜀. 

Solving the problem of when to explore and when to exploit is known as the explo-
ration versus exploitation dilemma. This is a difficult problem and an active area of 
research. Not surprisingly, Q-learning is difficult to apply to problems with even mod-
est state and action spaces, but its value lies in its ability to solve problems without a 
model and to work online with the system (learning-and-optimization). 

3.2 An MDP for PSO: EPANET simulator as an Environment  

To solve PSO through RL, the first step consists in defining the underlying MDP. A 
similar approach has been proposed in [16] where the goal is to minimize energy cost 
over a certain time-period (horizon) under constraints on operation parameters. In [9], 
authors decided to model the set of possible state, 𝑠 ∈ 𝑆, through 2 variables: level of 
tank (ℎ) and average pressure (𝑝):  

 
             𝑠 = (ℎ@, 𝑝@)           (15) 
 



Differently from other approaches, such as in [7], they do not include time T as state 
variable. Another crucial difference is that 

• in [7] the MDP is generated exhaustively by interacting with EPANET, so including 
time in the definition of state helps in modelling the deterministic transitions of the 
WDN system. Then DP – specifically, value iteration – is used to solve the MDP, 
assuming the learned policy is optimal for the WDN. 

• instead, in [9], ADP is used and the MDP is not generated exhaustively (specifically 
the transition dynamics) but exploration and exploitation are performed to learn 
something more about the MDP by interacting with the system (exploration) while 
trying to generate the optimal strategy (exploitation). 

Thus, while in [7] EPANET is used a simulator for generating the MDP, in [9] 
EPANET is assumed to be a real WDN, whose real data are acquired through sensors. 
Since Q-Learning is based on the expectation form of the Bellman’s equation, the re-
sulting policy should be more robust to uncertainty – basically related to water demand 
– with respect to the policy obtained by solving the deterministic MDP through DP. 

 
Both the two state variables are continuous, and discretization is required to work 

with tabular MDP. For instance, a discretization on 5 levels, for both ℎ and 𝑝, results 
in 5 × 5 = 25 possible states.  

The set of actions 𝒜 is represented by the variables that can affect the system’s state. 
With respect to WDN, actions are represented by the status of the pumps, so that a 
generic action 𝑎 ∈ 𝒜 is defined as follows: 

 
𝑎 = {𝑢,, 𝑢-, … . , 𝑢0y}            (16) 

 
where 𝑢z	is the status of the 𝑗-th pump in the system and 1 ≤ 𝑗 ≤ 𝑁| and NU is the 

overall number of pumps (i.e. NU = 4 in the case study considered in [9]). When only 
on/off pumps are considered, the possible values for every component of the action is 
𝑢z = {0,1}, where 0 represents pump off, 1 represents pump on.  

The transition function 𝒯 in a WDN cannot be formally defined due to recurrence 
relation between the variables that compose the system. Thus, the transition function 
can be described as: 

 
(ℎ@A,, 𝑝@A,) = 𝑓(ℎ@, 𝑝@, 𝑎@)         (17) 

 
In actual system h and p are provided by sensors, while in our experiments they are 

computed by EPANET. An important exogenous variable is the water demand, where 
𝑑@ is the demand from t to t+1: it is unknown to the optimization algorithm. Water 
demand is a fundamental input for EPANET as it drives – exactly as a in real world 
WDN – the hydraulic behavior of the network. Since 𝑑@ can be observed only at 𝑡 + 1,  
it cannot be included in the definition of 𝑠@; thus, reward associated to 𝑎@ is computed 
at 𝑡 + 1 and depends on 𝑠@ as well as the exogenous variable 𝑑@ and the action 𝑎@. 



Reward function is defined according to the PSO goal, which is to identify the pump 
schedule that minimizes the energy cost while satisfying the water demand. The objec-
tive function of the PSO problem, in the ON/OFF pumps setting, can be formulated as 
follows. Let denote with 𝐶@ the energy costs from 𝑡 − 1 to 𝑡, resulting form the config-
uration of pumps at 𝑡 − 1. Thus, 𝐶@ depends on the decision variables 𝑎@m, ∈ {0,1}0y, 
with 𝑁| the number of pumps (maintaining the same notation used for actions). The 
final goal is to identify the actions 𝑎@, with 𝑡 = 1, . . , 𝑇, that minimizes the total energy 
cost:  
 

min 	∑ 𝐶𝑡𝑇
𝑡=1             (18) 

 
To define 𝐶@, is important to highlight that two consecutive time steps in the ADP 

algorithm can be related to many EPANET simulation time steps. For instance, in our 
case study simulation steps are on hourly basis while time steps for ADP are specific 
hours of the day when the action – i.e. possible modification in the activation of the 
pumps – is performed. So, we need to introduce an operator, 𝜑(𝑡), which maps a time 
step of the ADP to a time step of the simulation. Just a simple example: suppose to have 
just two time steps in the ADP algorithm, which refer to the 6th and 18th time steps of 
the simulation, respectively, then 𝜑(𝑡 = 1) = 6 while 𝜑(𝑡 = 2) = 18. This notation 
allows for a definition of 𝐶@ which considers the simulation time resolution and, there-
fore, hourly variations in the price of energy.  

 

       𝐶𝑡 = ∑ 𝑐𝑖
𝜑(𝑡)
𝑖=𝜑(𝑡−1) �∑ 𝑄𝑖,𝑗

𝐻𝑖,𝑗
𝜂𝑗

𝑁𝑈
𝑗=1 𝑎𝑡,𝑗�       

 (19) 
Where: 

o 𝑐� is the energy price at time 𝑖 (i.e., 𝑖-th hour of the day in a typical PSO setting) 
o 𝑄�,z is the quantity of water provided by the 𝑗-th pump at time 𝑖 
o 𝐻�,z is the head loss of the 𝑗-th pump at time 𝑖 
o 𝜂z is the efficiency of the	𝑗-th pump (it does not depend on time) 
o 𝑎@,z is the status of the 𝑗-th pump from 𝑡 − 1 to 𝑡 (which is constant for every 
𝑖 ∈ [𝜑(𝑡 − 1); 	𝜑(𝑡)]) 

 
In any case, the computation of 𝐶@ is performed by EPANET and the result is pro-

vided at the end of the simulation.  Finally, the reward function ℛ	can be described as:  
 

ℛ =	�
𝑟@ = 0																												𝑖𝑓	𝑡 = 0																																																					
𝑟@ = |𝐶@̅ − �̅�@m,|									𝑖𝑓(𝑡 > 0	 ⋀𝐶@m, < 10� ⋀𝐶@ < 10�	)
	𝑟@ = 10�																						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																

    (20) 

 
Where t is the time step over the optimization process, starting from t=1 to t=T, 𝐶@ 

represents the energy cost at time t while �̅�@ is the cost associated to the pump schedule 
up to t, as computed by EPANET. 



 
In [9], authors reported that the most important result is that all the schedules gener-

ated by the ADP approach are feasible when the strategy learned by the RL agent is 
applied to new scenarios characterized by variation of the water demand. Naturally, the 
policy on these new scenarios is not able to provide the optimal (deterministic) solution, 
but in any case, a feasible – and quite good – schedule even under uncertainty of the 
water demand. 

4 Concluding remarks 

The increasing “digitalization” of urban water distribution networks is generating huge 
amounts of real time data from flow/pressure sensors and smart metering of household 
consumption and enabling new ways to achieve more efficient operations. Approximate 
Dynamic Programming has the potential to leverage the value hidden in real time data 
assets into energy driven PSO which satisfies the operational constraints. The main 
result is that ADP strategies are robust with respect to different demand level. Thus, 
while traditional approaches require to know the water demand in advance or, at least, 
to have a reliable and accurate forecasting, ADP provides a policy, that is a strategy to 
decide how to act, as new sensor data become available. Future work will have to ex-
plore other Reinforcement Learning approaches also for continuous state and action 
spaces, hyperparameter optimization, more precisely learning rate, and discount factor, 
and a principled way to identify effective reward functions. 

References 

1. Mala-Jetmarova, H., Sultanova, N., Savic D. (2017). Lost in Optimization of Water Distri-
bution Systems? A literature review of system operations, Environmental Modelling and 
Software, 93, 209-254. 

2. Sterling, M. J. H. and Coulbeck, B., (1975). A dynamic programming solution to the opti-
mization of pumping costs, in Hybrid genetic algorithm in the optimization of energy costs 
in water supply networks, ICE Proceedings, vol. 59(2), 813–818.  

3. Powell, W.B. (2007). Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality. John Wiley and Sons.  

4. Ikonen, E., Selek, I., Tervaskanto, M. (2010). Short-term pump schedule optimization using 
MDP and neutral GA, IFAC Proceedings Volumes, 43(1), 315-320.  

5. Ikonen, E., and Bene, J. (2011). Scheduling and disturbance control of a water distribution 
network. Proc. 18thWorld Congress of the International Federation of Automatic Control 
(IFAC 2011), Milano, Italy.  

6. Sutton, R.S., Barto, A.G., 1998. Reinforcement Learning: An introduction – Adaptive Com-
putation and Machine Learning. MIT Press, Cambridge, USA.  

7. Fracasso, P.T., Barnes, F.S., Costa, A.H.R. (2013). Energy cost optimization in water distri-
bution systems using Markov Decision Processes. International Green Computing Confer-
ence Proceedings, Arlington, 1-6.  

8. Fracasso, P.T., Barnes, F.S., Costa, A.H.R. (2014). Optimized Control for Water Utilities, 
Procedia Engineering, 70, 678-687. 



9. Candelieri, A., Perego, R., Archetti, F. (2018). Intelligent Pump Scheduling Optimization in 
Water Distribution Networks, In Proceedings of the 12th Learning and Intelligent Optimiza-
tion Conference (LION), June 10-15 2018, Kalamata, Greece [ahead of printing]. 

10. Pasha, M. F. K., and Lansey, K. (2009). Optimal pump scheduling by linear programming. 
In Proceedings of World Environmental and Water Resources Congress 2009 - World En-
vironmental and Water Resources Congress 2009: Great Rivers. Vol. 342, 395-404. 

11. Puterman, M. (1994). Markov Decision Processes | Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY.  

12. Howard R. A., Dynamic Programming and Markov Processes. Cambridge, USA: MIT Press, 
1960.  

13. Bellman, R.E., (1957). Dynamic Programming. Princeton University Press, Princeton, USA.  
14. Wiering M. and Van Otterlo M., Reinforcement Learning - State-of-the- Art, 1st ed. Berlin, 

Germany: Springer-Verlag, 2012.  
15. Powell, W.B. (2007). Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality. John Wiley and Sons.  
16. Ertin, E., Dean, A. N., Moore, M.L. and Priddy., K.L., 2001. Dynamic optimization for op-

timal control of water distribution systems. Applications and Science of Computational In-
telligence IV, Proc. SPIE Vol. 4390, pp. 142-149. 

 


