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Abstract—Initially IoT systems have been built as isolated
solutions for each problem domain. This has implied a lack of
standardization and interoperability. The global IoT vision aims
to integrate distinct problem domains into a unified network
in order to offer enriched context and meaningful correlations.
Connecting global platforms with multiple IoT sensor networks
will imply increased data processing requirements. In this paper
we first present the main technical challenges and non-functional
requirements demanded by a cross-domain IoT data processing
platform. We then propose a cloud based data processing
architecture that integrates a collection of suitable frameworks
from existing state of the art work. In the end we validate the
proposal with a reference implementation.

Index Terms—IoT, data processing, cross-domain platform, big
data, cloud computing

I. INTRODUCTION

Today various embedded devices are capable of commu-
nicating and sharing data using the Internet. In this manner
traditional web services are enriched with physical world
services [1].

In addition to the IoT vision, which gives every device an
IP address and interconnects them, there is also the notion of
Web of Things (WoT) which enables the devices to be part of
the world wide web. Both concepts relate to the common goal
of achieving ubiquitous computing where computing is made
to appear everywhere and anywhere [2].

Numerous research efforts such as [3], [1], [4] and [5]
have concluded that reusing the existing web architecture to
integrate new devices is the most viable solution in terms of
scalability, costs and complexity. In this sense an important
idea is to have smart devices act as tiny web servers that
directly provide web services and thus expose their data.

The Representational State Transfer architecture (REST) [6]
has been identified as the ideal candidate [7], [8] in WoT for
its main two advantages: the low complexity and the loose-
coupling stateless nature of its interactions. These two features
allow REST services to be exposed by resource-constrained
devices and enable an easy composition.

Finally a mashup of web services is built at an unprece-
dented scale, growing at high pace and producing massive
amounts of data ready to be put to use to provide better
services to our society. In this context, scalable, real-time
management and reasoning over sensor data are becoming
vital aspects. The way in which this data is integrated and
processed has led to significant research efforts and has yet to
reach maturity.

With regards to data processing, the tendency is to keep time
series processing close to the device itself (aka edge comput-
ing) so that traffic flowing through the mesh is minimized.
On the other hand, more complex processing is needed in a
centralized place such as the cloud which has the big picture
of the network. This helps to do further correlations, to make
predictions based on historical data and to take decisions.

The work presented in this paper focuses on the cloud
computing environment dedicated to collect, process and in-
terpret IoT data. This data is represented by sensor data but
also relevant metadata such as structured human knowledge,
equipment details or spatial information.

We use the examples in the next section to identify common
patterns of data processing and the main research implications.
This ensures the motivation to propose a generic platform
called BigClue that can handle data processing for different
IoT domains. In the end we demonstrate a reference imple-
mentation in a smart farming use case.

II. APPLICATIONS OF SENSOR DATA PROCESSING

1) Smart farming: Sensors can contribute with data to
enable smart farming environments. For example information
about humidity, temperature or light can be used in conjunction
with weather data to understand and better monitor farm
crops. Sensor information can also be used to understand the
development of plants and verify their behavior with existing
domain knowledge. In addition location data and statistical
information can provide a better context (e.g. soil type, wind,
air composition, animals). By gathering information from
several farms, different strategies can be shared among farms
while the farming process becomes more solid. Legal and
compliance information services can be used by both farmers
and agencies to manage agriculture better. Examples of such
an application is project ClueFarm [9] where authors propose
to join the information obtained locally in a cluster of farms.

2) Water management: Water management is undergoing a
rich transformation from the sectoral approach to integrated
water management systems with interrelated processes within
the water cycle. Due to the use of instrumentation and teleme-
try of water systems a palette of smart data applications is now
possible. Obvious examples are the early detection of floods,
excessive pollutants and the ability to track and understand
the overall water lifecycle and its implications. In order for
this to be achieved data must be collected and accessed in
real-time and correlated with historical facts. Initiatives such
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as Data4Water [insert ref] project are investing in raising the
awareness and developing systems to tackle these challenges.

3) Smart homes: Houses and offices can make use of
distributed sensors to automatically handle room heating,
lighting and save energy with appropriate monitoring and
alert systems. For example in [10] an energy-aware/cost ware
platform for smart homes is implemented to monitor energy
consumption. It also benefits real-time information about tar-
iffs by integrating smart grid web services. Another example is
EnergyVisualizer [11], which offers a web interface to control
different home appliances and their energy consumption.

4) Transportation and logistics: In supply chains, real-time
monitoring of products can be achieved by using RFID and
NFC (e.g. purchases of raw material, transportation, storage,
distribution). Product related information is obtained fast and
accurately so that companies are able to adapt quickly to
market changes. Some of the advanced companies in the
industry like Walmart and Metro use these kind of technologies
and are able to achieve zero stock [12], [13].

5) Health tracking: Today a variety of medical sensor de-
vices can be used to track personal health information or make
predictions about individuals’ lifestyle and possible diseases.
Background information can help identify and authenticate
patients and reduce harmful incidents. Data collection can
reduce form processing time and enhance automated care
and medical inventory management. Sensing devices may
automatically diagnose patient conditions and retrieve health
indicators.

III. MAIN RESEARCH CHALLENGES

The current state of the art borrows many models from those
that deal with existing Internet data. Large web companies
such as Google, Yahoo or Facebook have led the advance in
processing and reasoning techniques and thus have produced
many pioneering technologies that deal with Internet data.
Although these technologies have proven effective in relation
to their business scenarios they have to be adapted in order to
be able to scale within the IoT environment. This process of
adaption creates new research challenges. We outline several
of them in the following paragraphs.

1) Data processing: One challenge of processing sensor
network is to understand how to efficiently balance in-network
with centralized processing without losing important informa-
tion or straggling the computational environment. Since data
streams from sensor networks are noisy significant research is
needed to understand how to perform real-time data cleaning
in order to build reliable models. In addition, due to large vol-
umes of collected data processing may benefit from improved
compression and filtering techniques.

2) Processing platforms: Current real-time processing is
mainly done on existing web data but the extension to con-
siderably larger amounts of data produced by multiple sensor
networks requires research and design of robust and scalable
processing platforms. In addition these frameworks need to
consider numerous other functionalities such as correctness

debugging, performance debugging, scheduling policies or
memory management.

3) New reasoning opportunities: Although reasoning has
been addressed on many stand-alone systems (e.g. wireless
networks), new opportunities and challenges for deriving
useful information arise from the availability of various and
heterogeneous new data sources. Their integration with the
existing Internet domain knowledge creates room for consid-
erable innovation.

4) Context sharing: So far neglected, contextual infor-
mation sharing needs to be addressed when designing new
middleware solutions. Many existing solutions concentrate
on isolated applications. In the IoT paradigm, the inter-
middleware communication (e.g. of semantic relationships)
will be an essential requirement if the extraction of knowledge
and its reusability is to be leveraged.

IV. MOTIVATION

Initially IoT systems have been built as isolated solutions
for each problem domain. This has implied a lack of stan-
dardization and interoperability. The global IoT vision aims
to integrate distinct problem domains into a unified network
in order to offer enriched context and meaningful correlations.
There is a significant body of research in developing interoper-
able frameworks and systems to be able to aggregate multiple
sensor communication technologies as seen in [4]. Since the
global platforms will connect multiple IoT sensor networks,
this will imply increasing data processing requirements.

The examples in the previous section reveal common data
processing patterns between different IoT use cases. Specif-
ically, there is a considerable number of use cases where
real-time information must be processed and presented in a
meaningful way.

Fig. 1: IoT implementations follow a similar data flow
pattern

The key observation in 1 is that, regardless of domain, time
series data obtained from sensors must follow several common
steps until end-user functionality is provided. In the left side
of the picture 1 sensor data must be collected, filtered, cleaned
and aggregated.

The requirements at this level are simple event processing
mechanisms, low battery consumption, user friendly pro-
grammable interfaces.
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The data is then broadcasted to centralized processing units
to the right side of the picture within the cloud computing
space. Here richer functionality can be provided such as ad-
vanced monitoring, event detection, alarm generation or fault
root cause analysis, cross-domain and metadata correlations,
context reasoning, reporting functionality and many others.
These functionalities generally require increased processing
power, persistence, machine learning models, metadata man-
agement, visualization and others.

In addition, the successful implementation of these use cases
depends on the ability of the underlying platform to overcome
several technical challenges. We present them below.

1) Layered architecture: A complete solution should be
based on a layered architecture with multiple components.
Each component should serve specific purposes and should be
able to run independently. At the very most the components
should be loosely coupled and should not provide too much
functionality.

2) Scalable, flexible, distributed framework: Scalability can
be addressed by using standards in place of customized solu-
tions. Also the solutions need to support plug-in architectures
which ease the adding or removing of components dynami-
cally. New functionalities should be added without modifying
existing modules. The architecture should be distributed and
allow context sharing (real-time, historic) between components
or frameworks at different levels.

3) Automated context life cycle management and model in-
dependency: Solutions should be able to dynamically discover
available sources such as physical, logical or virtual sensors
as manually managing the activation and deactivation of large
number of devices becomes inefficient. Appropriate data mod-
els should be used to store and clean the raw information while
requiring minimum human input. Data models should support
complex relationships and be able to represent a variety of
knowledge domains while being managed separately from
framework specific models.

4) Exposed Application Programmable Interfaces (APIs):
Exposing simple and efficient application programming in-
terfaces will enable the functionalities of the framework to
be accessed by other services and thus will simplify the
composition of more complex solutions. Applications will use
the APIs to implement specific business logic.

5) Multi-model reasoning: No unique reasoning method
can satisfy all the requirements therefore multiple reasoning
techniques must be applied depending on the use case. An
ideal framework should provide a complete palette of data
mining and analysis techniques in order to deliver rich func-
tionalities.

6) Monitoring and event detection: Detecting events in
real time will be an important asset of applications in the
IoT environment. Actions, recommendations and other context
information will depend on the successful implementation of
monitoring and event detection strategies.

7) Real-time processing: Processing and reasoning must be
done in a real-time fashion. Efficient methods for streaming
need to be considered as well as robust algorithms that must

analyze the data in one pass.. For example applications that
trigger alerts are time-sensitive and the time of response may
be significantly influenced by the large number of monitored
devices.

V. SIMILAR DATA PROCESSING PLATFORMS

There is a considerable number of platforms providing end-
to-end data management solutions however the majority do not
support real-time processing and advanced reasoning. With the
exception of MoCA [14] which provides an extra semantic
context, most of the solutions which do provide realtime
capabilities present limited reasoning techniques such as the
use of rules I.

MoCA [14] is a service based distributed middleware that
employs ontologies to model and manage context. It consists
of three key components: context providers, context consumers
and context service. The providers are responsible for gen-
erating or retrieving context from other sources available to
be used by the context management system while consumers
consume the context gathered and processed by the system.
The context service receives, stores and disseminates context
information.

SCONSTREAM [15] is a system with a centralized archi-
tecture that processes streams of data coming from physical
sensors and applies rules to detect events. It highlights the
challenges that appear in an IoT environment from a real-time
perspective.

UbiQuSE [16] is a middleware that connects with any type
of sensor. It provides real-time query processing based on live
streaming data and historic context. Reasoning is achieved
using rules.

COPAL [17] is a middleware with a loosely coupled plugin
architecture. It provides automatic code generation using ab-
stracts for re-usability and extendibility. Distribution includes
public-subscriber and query architectures.
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MoCA Y Ontology-
based

N N N Y N Y

SCONSTREAM Y Rule-based N Y N Y N N
UbiQuSE Y Rule-based N Y N Y N Y
COPAL Y Rule-based N N N Y N Y

TABLE I: Comparison of systems with real-time processing
capabilities

In addition to these research frameworks, the major cloud
providers, Google, Amazon, Microsoft [insert ref] now offer
IoT services and tools that can be composed to build such
platforms. These services can be used in a serverless comput-
ing scenario where several of the non-functional requirements
described previously are treated behind the scenes while
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the platform developer can concentrate on implementing the
orchestration of these services.

VI. PROPOSED ARCHITECTURE

In this section we propose a data processing platform called
BigClue that integrates a collection of suitable frameworks
from existing state of the art work. We describe the platform
and how we tackle each of the technical constraints discussed
previously.

While we argue that our proposal has enhanced capabilities
compared to other platforms, our arguments rely on the exist-
ing research work that can be consulted in the bibliography.
It is not the scope of this thesis to rework or re-validate what
has been previously demonstrated.

We consider that the originality of the work consists in
putting the right pieces together in the right way. Therefore
we limit our experiments to a reference implementation to
show that such a platform is viable and we do not engage
in additional benchmarking or performance comparisons with
other similar platforms.

We propose a reusable, scalable platform that employs a
multi-tenant approach. It relies on a service oriented archi-
tecture and offers real-time processing capabilities, advanced
reasoning and auto-scaling.

In order to achieve a layered architecture and deliver this
kind of functionality the system is split into the following
components:

• Processing - processing can take various forms (clean-
ing/rules/analytics)

• Messaging - data is collected from multiple sources and
replicated to multiple destinations

• Storage - data needs to be stored in a persistent layer for
later availability

• Service registry - services need to be auto-discovered
• Visualization - data must be presented in an useful way
In this sense we choose a micro-services architecture where

each of the above components acts as an independent service
with its own life-cycle.

Exposed APIs are achieved by choosing a communication
based on HTTP protocol. We choose RESTful [6] in compari-
son to Simple Object Access Protocol (SOAP) because of the
following benefits [7], [8]: low complexity, stateless nature,
easy to implement, standardized (HTTP Protocol)

Although there are solutions which perform multiple roles
we strive to keep a separation of concerns and discuss each
component separately.

A. Data processing

Since processing is a broad subject and our task is to choose
the best fit, in the following paragraphs we share more details
about existing work and discuss pros and cons. We motivate
our choices for the adopted techniques and technologies.

The map reduce paradigm and its implementation Hadoop
has been widely adopted for situations where processing large
amounts of data is needed but, due to the nature of its
programming model, it has proven suitable only for offline

batch processing. Efforts have been made to make it suitable
for real-time analysis [18] and some of them may fit some
near real-time use cases. However, in an IoT environment, the
processing and analysis will be done in real-time and in one
pass so tools to process streaming data need to be considered
instead.

Nevertheless there will be still the need to mine historic
data to allow a deeper analysis in parallel with the real-time
counterpart. In fact today there are many implementations data
that rely on a two tiered architecture (e.g. lambda architecture)
that leverages the advantages of both components. In general
the results of the offline analysis are fed to the real-time
algorithms to infer better rules and classification models.

Model Characteristics Drawbacks Implementations
Map-
reduce

distributed, Batch-
oriented, file-
system storage

Not suitable for
real-time process-
ing

Hadoop

Streaming
databases

Concepts similar to
relational database
systems

most not scalable;
those distributed
require complex
fault tolerance
protocols

Aurora, Bore-
alis

NewSql
databases

Distributed + ACID
+ Sql interfaces

Still young, not
tested

H-Store, S-
Store, Google
Spanner

Large-
scale
streaming
frame-
works

Distributed, expose
high-level APIs

Costly replication
(usually done in
an external stor-
age);
Do not support
mixing streaming
and batch tasks

TimeStream,
Map Reduce
Online

Messaging
systems

Based on the
publish/subscribe
model; fast
messaging systems

Replication done
on external sys-
tems, kafka is less
suited for stream
processing

Storm & Tri-
dent, Kafka

Incremental
processing

Same benefits of
map-reduce

they store all
their state in a
replicated disk
file system,
incurring high
overheads

Incoop [19],
CBP [20] and
Comet [21]

Stateless,
deter-
ministic
computa-
tions

Distributed, batch-
oriented, in-
memory computing,
easy computation
of lineage through
RDDs, both batch
and streaming in
one system

Supports only
the point-to-point
pattern

Spark + D-
Streams (Spark
Streaming)
(said to be
20x faster than
hadoop)

Lambda
architec-
ture

Batch + real-time
(eg. Hadoop +
Storm)

Integration may
be difficult,
usually based
on customized
solutions

Applied at Ya-
hoo, Netflix

TABLE II: Comparison of real-time processing models

A full comparison of the possible approaches is listed in
table II. Taking into account the IoT real-time processing
and the multi-model reasoning requirements we choose to
implement a lambda architecture presented in figure 2:
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Fig. 2: Processing architecture

The first step is to collect sensor data and route it to a central
endpoint. Then this data is processed two times: once in the
speed layer where fast decision making is required, second
in the batch layer where a time series algorithm models the
historical pattern and generates predictions. The results are
used in the speed layer to raise alarms and recommendations
to the user. In this way monitoring and event detection
functionality can be provided

A cross-domain IoT platform implementation requires to
be scalable, flexible and distributed due to the increased
data volumes, data models and business logic from various
domains. Large-scale streaming is an essential functional-
ity. There are numerous technical approaches for achieving
such functionality including streaming databases, large-scale
streaming engines, message-driven systems, or bulk incremen-
tal processing.

There have been a number of recent systems that enable
large-scale streaming processing with the use of high-level
APIs (see table III). Unfortunately these systems do not
provide efficient fault and straggler recovery techniques. Also,
most of them do not support mixing streaming with batch and
ad-hoc queries.

Apache Spark [27] has gained a lot of attention due to
its different approach and increased performance. Its authors
claim that Spark is 20 times faster than Hadoop for iterative
applications and can process 1TB in about 5-7 seconds.

The key concept in Spark is represented by RDDs [28]
(resilient distributed datasets). They consist of a restricted
form of shared memory which is based on coarse-grained
operations and transformations (e.g. map, filter, join) to the
shared state, as opposed to other systems which process fine-
grained updates.

By applying the same operations to many data item sets
it is possible to log the transformations and compute the
lineage for each RDD, instead of the actual data. An RDD
has enough lineage information to compute its partitions from
stable storage. RDDs can express cluster programming models
such as map-reduce, DryadLINQ, Haloop, Pregel or Sql and
allow a more efficient fault tolerance than previous systems
but are restricted to applications that perform bulk reads and
writes.

D-Stream [29], [30] (or Spark Streaming) is an add-on to the
Spark engine and is based on the idea of treating streaming
computations as series of short interval batch computations.
Because it is based on RDDs the process is also deterministic,

System Characteristics Drawbacks
TimeStream
[22]

runs continuous, stateful
operators in Microsoft
StreamInsight

Recovery takes places on a
single node for each oper-
ator; is proportional to the
operator’s processing win-
dow (e.g., 15 seconds for a
15-second sliding window)

uses a recovery mecha-
nism similar to upstream
backup

MillWheel
[23]

runs stateful computations reliability consists of writ-
ing all state in repli-
cated storage systems (e.g.
BigTable)

MapReduce
Online [18]

a streaming Hadoop en-
gine that pushes records
between maps and reduces

recovery of reduce tasks
with long-lived state is not
possible

uses upstream backup for
reliability

does not handle stragglers

Meteor
Shower [24]

uses upstream backup can take up to minutes to
recover state

iMR [25] exposes a MapReduce API
for log processing

can lose data on failure

Percolator
[26]

runs incremental computa-
tions using specific trig-
gers

does not offer high-level
operators (e.g. map or
join)

TABLE III: Comparison of large scale stream processing
platforms

so lost data can be recomputed without replication and in
parallel with the active computations. Consistency is ensured
by atomically processing each record within the time interval
in which it arrives. Spark streaming inter-operates efficiently
with Spark’s batch features. Users can express ad-hoc queries
and use the same high level API for processing both historical
and streaming data.

We choose to use Apache Spark for both speed and batch
layers. In summary Apache Spark has the following differen-
tiators:

• Low latency processing
• In-memory distributed computing
• Data recovery is fast and straightforward
• Can be easily integrated with other technologies
• Opensource, community is large

B. Messaging, storage and service registration

Internet companies invested significant time in distributed
messaging systems which are able to process and send large
amounts of data. Using these platforms (see table IV), devel-
opers can write stateful code to process individual records.

Apache Kafka [32] is a lightweight message broker that
handles the delivery of sensor data to the processing and
storage layers. We choose Apache Kafka because of the
following differentiators:

• Lightweight, very fast
• Distributed system, fault tolerant
• Guarantees at-least-once message delivery
• Easy integration with other technologies
• Open-source, community is large
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Platform Characteristics Drawbacks
Storm [31] “at least-once” delivery keeps all state in a repli-

cated databases, expensive
Trident exposes a high-level API

on top of storm
Kafka [32] faster than other

messaging systems, “at
least once” delivery,
allows automatic
failover to replicas,
supports point-to-point
and publish subscribe
models

is less suited for legacy
systems, less capability
for stream processing, no
guarantee on the order-
ing of messages com-
ing from different parti-
tions, requires deduplica-
tion logic at consumer

TABLE IV: Comparison of big data messaging systems

One of the key functions of streaming databases is the
possibility of running continuous queries that produce different
results as new data arrives.

In this sense recent research has resulted in S-Store [33],
a data management system that combines OLTP transactions
with stream processing. It is based on H-Store [34], a dis-
tributed, row-store based relational database which runs on
clusters of shared-nothing, main memory nodes. H-Store is a
type of MMDBS (Main Memory Database Systems) which
means that it performs computations in-memory.

H-Store is part of the emerging class of new database
systems, called NewSql which seek to retain the advantages of
traditional database systems (ACID and Sql interface) while
leveraging the scalability and speed of NoSql engines. In
H-Store fault tolerance is realized using a combination of
command logging and periodic snapshotting. Each node hosts
one or more sites that execute an autonomous instance of
a storage engine. Because multi-side nodes don’t share data
structures with collocated sites, there is no need to solve
concurrency issues.

S-Store is a research effort that adds streaming primitives to
H-Store to support streams, windows, triggers, and workflows.
S-Store inherits all benefits from H-Store and adds the lacking
streaming functionalities.

Although they are good fit for a significant number of
uses cases, streaming databases generally lack scalability and
fault tolerance. Distributed databases such as Borealis [35]
use replication or upstream backup for recovery but require
complex protocols. A more efficient recovery mechanism,
namely parallel recovery is done in [36], but does not handle
stragglers and can tolerate at most one node failure.

S-store is still under development and has not benefited from
extended benchmarks and real use cases. It is still not clear
how it performs under various workloads. Also, because it
does not keep any data in non-volatile storage, it must use
other strategic data distribution schemes to maintain high-
availability.

Our requirements imply the need for scalability and fault
tolerance so we focus our attention on NoSql category of
databases. Since in our use case we value consistency and
partition tolerance over availability we choose Apache Hbase.
Hbase has the following features:

• Distributed key store

• Compatible with Hadoop (HDFS)
• Offers random access
• Big community, open-source
The underlying file system is HDFS (Hadoop Distributed

File System) with the following benefits:
• Low cost per byte
• Solid data reliability
• High bandwidth to support MapReduce workloads
Our choice for service registry and auto-discovery is Consul,

from HashiCorp, an open-source software. Consul has the
following features and advantages:

• Service discovery
• Health checking
• Key value store
• Distributed architecture
• Multi data-center
At startup time a service sends information to Consul which

registers it and exposes it to other services.

C. Technology stack

The overall technology stack is presented in figure 3:

Fig. 3: Technology stack

VII. REFERENCE IMPLEMENTATION

One of the implemented use cases is ClueFarm project
(http://cluefarm.fitx.ro/) which aims to aggregate, process, ana-
lyze and present farm related information. It offers cloud-based
farm management services for indoor agriculture in order to
increase crop productivity and lower knowledge barriers.

ClueFarm project requires the following services to be
implemented:

• Monitor the development of farm resources and the
environmental conditions

• Crops or livestock management
• Estimation of the productivity and management solutions

for the future
• Imposing farm regulations by authorities and tracing how

the farms meet them
• Other third party functionalities
The monitoring process is very important for farming. First

of all, it provides records regarding the farm’s development.
This is regarded as the farm resource monitoring process and
it may vary from supervising the crops growing to tracking the
welfare of the farm’s livestock. By analyzing this monitoring
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data, we can obtain an overview of the production rate
increases and decreases. Secondly, the monitoring process can
be used for supervising the environmental conditions, such
as water quality or land condition. This helps keep the envi-
ronment in a good condition, according to the environmental
regulations, and indirectly it also leads to long-term production
growth.

We choose a typical use case of monitoring to test our
platform: to detect anomalies on streaming sensor data. This
time we rely on basic statistical functions. These functions
are applied on a window of time-series data. Using mean and
standard deviation we calculate vectors of min and max values.
Values outside the limiting vectors are considered outliers (an
arbitrary stdFactor is manually chosen).

Algorithm 1 Outlier detection using statistical functions
Compute mean vector
Compute variance vector
STD ← sqrt(variance)
minV alues ← (std−mean)
maxV alues ← (std+mean)
if newValue between [MinValues, MaxValues] then

NOK
end if
return OK

We are considering two sources of time series: internal
temperature and humidity, collected from greenhouse sensors.
The data is collected for a 2 months’ period (beginning
of September till end of October) from a local greenhouse.
The frequency of collected values is 15 minutes.The data set
records contain:

sensorID|timestamp|temp|hum|externalmeasurements

The sensors are collocated and they present high data
correlation with external weather conditions. In 4 a day/night
cycle can be observed.

Fig. 4: 2 months of sensor data

In figure 5 a screen-shot is taken displaying outliers in
streaming real-time sensor data.

Fig. 5: Outliers in temperature data

When talking about the vizualization it is important to
choose a technology that enhances reports and views on
streaming data. We choose to use JSF, Amcharts and Prime-
faces for this implementation. In figure 6 we can see the main
class diagram used for the implementation:

Fig. 6: Reference implementation main class diagram

The functionality of the Java classes of each component is
described below:

• Message broker: ProduceOnlineSensorData reads and
broadcasts JMS messages with sensor readings.

• Data processing: PersistSensorData reads and stores sen-
sor information in the database. ProcessingStreaming-
TimeSeriesSensorData applies statistical functions to in-
comings time series windows. ProcessHistoricalData is
used to apply prediction algorithms on historical data.

• Data visualization: ReadHbaseData reads sensor data
persisted in the database to be shown in the graphical
user interface. ChartManagedBean is used for visualizing
the incoming data and detected anomalies

VIII. SUMMARY

In this paper we first motivated the needs and discussed
the technical challenges for a cross-domain IoT platform.
We proposed BigClue, a data processing solution suitable
for multiple IoT domains. It is a platform which integrates
multiple existing big data technologies in order to accom-
modate a cross-domain IoT implementation and to provide
room for value added services. While presenting the solution
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we motivated our architectural and technology choices and
explained how these fulfill the overall requirements. We then
presented a reference implementation developed for a smart
farming use case.

IX. ACKNOWLEDGEMENT

The work has been supported by the project Data4Water:
Excellence in Smart Data and Services for Supporting Water
Management, number 690900/H2020-TWINN-2015, and the
UPB project GEX AU 11-17-11 Activ. 4000.130.

REFERENCES

[1] J. He, Y. Zhang, G. Huang, and J. Cao, “A smart web service
based on the context of things,” ACM Transactions on Internet
Technology, vol. 11, no. 3, pp. 1–23, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2078316.2078321

[2] “Ubiquitous computing - wikipedia,” https://en.wikipedia.org/wiki/
Ubiquitous computing.

[3] L. Atzori, A. Iera, and G. Morabito, “The Internet of Thinags:
A survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805,
2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S1389128610001568

[4] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE Communi-
cations Surveys and Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[5] D. Zeng, S. Guo, and Z. Cheng, “The web of things: A survey,”
JOURNAL OF COMMUNICATIONS, vol. 6, no. 6, pp. 424–454, 2011.

[6] “Representational state transfer - wikipedia,” https://en.wikipedia.org/
wiki/Representational state transfer.

[7] “TinyREST: A protocol for integrating sensor networks into
the internet,” Proceedings of REALWSN, pp. 101–105, 2005.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.112.5129{&}rep=rep1{&}type=pdf

[8] “Fixed-mobile hybrid mashups: Applying the REST principles to
mobile-specific resources,” vol. 5176 LNCS, 2008, pp. 172–182.

[9] E. Apostol, C. Leordeanu, M. Mocanu, and V. Cristea, “Towards a hybrid
local-cloud framework for smart farms,” in Proceedings - 2015 20th
International Conference on Control Systems and Computer Science,
CSCS 2015, 2015, pp. 820–824.

[10] A. Kamilaris and A. Pitsillides, “Exploiting Demand Response
in Web-based Energy-aware Smart Homes,” in ENERGY 2011,
The First International Conference on Smart Grids, Green
Communications and IT Energy-aware Technologies, 2011, pp.
27–32. [Online]. Available: http://www.thinkmind.org/index.php?view=
article{&}articleid=energy{ }2011{ }2{ }20{ }50047

[11] “Towards the Web of Things : Web Mashups for Embedded Devices,”
2009, pp. 1–8.

[12] Yuan, Shumin, and Baogang, “Value Chain Oriented RFID System
Framework and Enterprise Application,” in Science Press, Beijing, 2007,
2007.

[13] K. Kalyanam, R. Lal, and G. Wolfram, Future Store Technologies
and Their Impact on Grocery Retailing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 141–158. [Online]. Available:
https://doi.org/10.1007/978-3-540-72003-4 9

[14] J. Viterbo, V. Sacramento, R. Rocha, G. Baptista, M. Malcher, and
M. Endler, “A middleware architecture for context-aware and location-
based mobile applications,” vol. 0, pp. 52–61, 10 2008.

[15] O. Kwon, Y.-S. Song, J.-H. Kim, and K.-J. Li, “Sconstream: A spatial
context stream processing system,” vol. 0, pp. 165–170, 03 2010.

[16] K. Conroy and M. Roantree, “Enrichment of raw sensor data to enable
high-level queries,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 6262 LNCS, no. PART 2, 2010, pp. 462–469.

[17] “COPAL: An adaptive approach to context provisioning,” 2010, pp. 286–
293.

[18] “MapReduce Online.” Proc. of the NSDI - Conf. on Networked
Systems Design and Implementation, p. 15, 2010. [Online]. Available:
http://static.usenix.org/events/nsdi10/tech/full{ }papers/condie.pdf

[19] “Incoop: MapReduce for incremental computations,” Proceedings of
the 2nd ACM Symposium on Cloud Computing - SOCC ’11, pp. 1–14,
2011. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2038916.
2038923

[20] “Stateful bulk processing for incremental analytics,” 2010, p. 51.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1807128.
1807138

[21] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou, “Comet:
Batched stream processing for data intensive distributed computing,”
in Proceedings of the 1st ACM Symposium on Cloud Computing, ser.
SoCC ’10. New York, NY, USA: ACM, 2010, pp. 63–74. [Online].
Available: http://doi.acm.org/10.1145/1807128.1807139

[22] “TimeStream: Reliable Stream Computation in the Cloud,” Proceedings
of the 8th ACM European Conference on Computer Systems (EuroSys
’13), p. 1, 2013. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2465351.2465353

[23] “MillWheel: Fault-Tolerant Stream Processing at Internet
Scale,” Proceedings of the the VLDB Endowment,
vol. 6, no. 11, pp. 734–746, 2013. [Online].
Available: http://dl.acm.org/citation.cfm?id=2536229{%}5Cnhttp:
//static.googleusercontent.com/media/research.google.com/en/us/pubs/
archive/41378.pdf

[24] H. Wang, L. S. Peh, E. Koukoumidis, S. Tao, and M. C. Chan,
“Meteor shower: A reliable stream processing system for commodity
data centers,” in Proceedings of the 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, IPDPS 2012, 2012, pp.
1180–1191.

[25] “In-situ MapReduce for log processing,” USENIX Conference on
Hot Topics in Cloud Computing, p. 26, 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2170444.2170470

[26] D. Peng and F. Dabek, “Large-scale incremental processing using
distributed transactions and notifications.” in OSDI, vol. 10, 2010, pp.
1–15.

[27] M. Zaharia, “An Architecture for Fast and General Data Processing
on Large Clusters,” Ph.D. dissertation, 2014. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-12.html

[28] M. Zaharia, M. Chowdhury, T. Das, and A. Dave, “Resilient
distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing,” Nsdi, pp. 2–2, 2012. [Online]. Available: https:
//www.usenix.org/system/files/conference/nsdi12/nsdi12-final138.pdf

[29] “Discretized Streams: Fault-Tolerant Streaming Computation at Scale,”
Sosp, no. 1, pp. 423–438, 2013. [Online]. Available: http://dx.doi.org/
10.1145/2517349.2522737

[30] “Discretized streams: an efficient and fault-tolerant model for stream
processing on large clusters,” Proceedings of the 4th USENIX conference
on Hot Topics in Cloud Ccomputing, pp. 10–10, 2012.

[31] A. Toshniwal, J. Donham, N. Bhagat, S. Mittal, D. Ryaboy,
S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, and M. Fu, “Storm@twitter,” in Proceedings
of the 2014 ACM SIGMOD international conference on Management
of data - SIGMOD ’14, 2014, pp. 147–156. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2588555.2595641

[32] J. Kreps, N. Narkhede, and J. Rao, “Kafka: a Distributed
Messaging System for Log Processing,” ACM SIGMOD
Workshop on Networking Meets Databases, p. 6, 2011.
[Online]. Available: http://research.microsoft.com/en-us/um/people/
srikanth/netdb11/netdb11papers/netdb11-final12.pdf

[33] “S-Store: a streaming NewSQL system for big velocity applications,”
Proceedings of the VLDB Endowment, vol. 7, no. 13, pp. 1633–1636,
2014. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2733004.
2733048

[34] “H-store: a high-performance, distributed main memory transaction
processing system,” VLDB ’08, vol. 1, pp. 1496–1499, 2008. [On-
line]. Available: http://dl.acm.org/citation.cfm?id=1454159.1454211$\
delimiter”026E30F$nhttp://www.vldb.org/pvldb/1/1454211.pdf

[35] J. H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stonebraker,
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