
Trust and Reputation Management for Opportunistic

Dissemination
I

Radu-Ioan Ciobanua, Radu-Corneliu Marina, Ciprian Dobrea,⇤, Valentin
Cristeaa

aFaculty of Automatic Control and Computers
University Politehnica of Bucharest

313 Splaiul Independentei, Bucharest, Romania

Abstract

Nodes in opportunistic networks need to cooperate to disseminate data. How-

ever, employing intermediate nodes for dissemination leads to several security

issues. Here, we propose an opportunistic trust and reputation mechanism enti-

tled SAROS, which detects and avoids malicious nodes, i.e. nodes which, upon

receiving messages for other interested peers, modify their content in order to

spread false information. This can negatively a↵ect the network, by polluting

it with spam messages, or dropping messages of interest to the nodes in the

network. By detecting and avoiding malicious nodes, SAROS is able to increase

the percentage of correct messages that reach their destinations.

Keywords: opportunistic, dissemination, trust, reputation

1. Introduction

Since opportunistic networks (ONs) are totally decentralized, nodes need

to cooperate in order to successfully create a publish/subscribe environment

that benefits all the nodes in the network. However, employing intermediate

nodes for performing dissemination can lead to several issues. In this paper, we5

I
Supported by national project MobiWay, Project PN-II-PT-PCCA-2013-4-0321.

⇤
Corresponding author

Email addresses: radu.ciobanu@cti.pub.ro (Radu-Ioan Ciobanu),

radu.marin@cti.pub.ro (Radu-Corneliu Marin), ciprian.dobre@cs.pub.ro (Ciprian

Dobre), valentin.cristea@cs.pub.ro (Valentin Cristea)

Preprint submitted to Pervasive and Mobile Computing September 27, 2016

handle the problem of trust and reputation in opportunistic networks. Namely,

we propose a trust and reputation mechanism (entitled SAROS - Socially-Aware

Reputation mechanism for Opportunistic diSsemination) which has the purpose

of detecting and avoiding malicious nodes. A malicious node is a member of

the opportunistic network which, upon receipt of a message to be forwarded10

to interested nodes, modifies its content in order to spread false information.

This can lead to the pollution of the ON with spam messages, and to the loss of

messages of interest to the nodes in the network. By detecting and avoiding such

malicious nodes, SAROS is able to increase the percentage of correct messages

that reach their destinations.15

SAROS is implemented as a component of Interest Spaces (presented in more

detail in [1] and [2]), which is an interest-based data dissemination framework

for opportunistic networks. It is able to disseminate data to interested nodes, by

taking advantage of their context information (such as location, interests, social

connections, encounter history, etc.). Its advantage is that it o↵ers a unified20

interface for data dissemination in various situations.

Since opportunistic networks are decentralized and two nodes are only con-

nected upon a contact (i.e. when they are in range), handling trust and reputa-

tion is a totally di↵erent problem than in regular peer-to-peer networks. There

is no central entity that can be used as an authority regarding node reputa-25

tion, and a node only has information that it has gathered itself, or that it has

received from encountered nodes. However, a node cannot know how much to

trust the information received from an encountered node, which may very well

feed it false data. For example, a malicious node can report other malicious

nodes that it collaborates with as trustworthy nodes. Thus, a node can easily30

form a wrong impression (i.e. it can think that a malicious node is trustwor-

thy) by believing the information provided by malicious nodes, especially if it

encounters them often.

However, this is where the advantage of opportunistic networks is shown.

Since opportunistic networks are formed of mobile devices, mobility can also35

act as a benefit. For example, it is much more di�cult for a malicious node to

2

follow a “victim” node around to feed it false information than it is for nodes in a

regular peer-to-peer network to flood the victim with false information whenever

they want. Moreover, opportunistic nodes are generally mobile devices such

as smartphones that belong to humans, so interactions are governed by social40

connections and user mobility. This means that a large part of the encountered

nodes are familiar, and most of them are even connected through an online social

network. Since connecting on such a social network requires that the nodes know

(and implicitly trust, to an extent) each other in real-life, this information can

be used to assign pre-set trust values to connected nodes.45

In order to have an informed view of the entire network (or as much of it as

possible), nodes have to collect data about the behavior of relay nodes, as well

as regarding the opinions of other nodes about them. Since an opportunistic

node cannot know on the spot whether another node it has relayed its message

to actually delivers it to the intended destinations, a di↵erent means of confir-50

mation should be employed. Other solutions employ feedback messages that are

spread in the network upon a successful delivery. However, such messages tend

to flood the network, so a better means might be to employ gossiping. Thus,

when a successful delivery occurs, a node can increase its opinion regarding the

relay node (or nodes), and gossip this information to other nodes in the network.55

This way, information is spread through the entire network, and more and more

nodes get to see the bigger picture.

Another problem regarding opportunistic networks is that nodes do not have

a direct method of deciding whether a received message has not changed during

its life in the network (since it may pass through many hops until its destination,60

some of which can be malicious). Means of encrypting messages have been

proposed [3], but they are based on nodes establishing a key in an o✏ine manner,

prior to getting on the network, which is not always feasible. Nodes can sign

messages with a certificate, but the problem is that there is no central trusted

entity that is able to generate and confirm the authenticity of these certificates.65

We consider that SAROS is the first opportunistic trust solution that has

detection mechanisms for messages that have been tampered with, while also

3

using social information to pre-establish trust. Other social-based solutions

simply use social relationships to decide whether a node is trustworthy, without

actually analyzing the content carried by that node, while also not giving a70

chance for delivery to nodes that are not socially connected (which can lead to

missing some valid data exchange opportunities). SAROS takes advantage of

the inherent design of opportunistic networks to receive a message on multiple

paths and decide its correctness.

The rest of this paper is structured as follows. Section 2 presents the state75

of the art in the area of trust and reputation management for mobile networks.

Then, in Section 3 we present an overview of the Interest Spaces framework,

discussing its architecture and the composing layers. In Section 4, we propose

and present SAROS, and in Section 5 we perform an experimental evaluation

of the proposed solution for multiple scenarios. Finally, in Section 6, we present80

our conclusions.

2. State of the Art

A very thorough survey of security and trust management in ONs is pre-

sented in [3]. Among a multitude of security and privacy-related issues, the

authors also tackle the problem of managing trust in opportunistic networks, in85

terms of having confidence that a node that is relayed a message will success-

fully deliver it towards the intended destination. The authors present existing

trust solutions for mobile networks, and split them into several categories, de-

pending on the type of trust establishment: reputation-based trust [4, 5], social

trust [6, 7], environmental trust [8], and data-centric trust [9, 10].90

EigenTrust [11] is a trust and reputation system where nodes compute and

use global trust values for choosing the peers they download data from, in order

to avoid and isolate malicious nodes. EigenTrust nodes compute local trust

values for their peers based on their transaction history. In order to decide

if a node is to be trusted, EigenTrust computes a global trust value for that95

node, obtained from the local trust values assigned by other peers to that node,

4

weighted by the global reputations of the assigning peers. The authors also

introduce the notion of pre-trusted peers, which are the first nodes queried

regarding peer reputations, and they are also automatically trusted.

Similarly to EigenTrust, PowerTrust [12] is a reputation system for P2P100

networks that builds a trust overlay network to model the trust relationship

between peers, and is based on the observation that user feedback can be ap-

proximated by a power-law distribution. It dynamically selects a small number

of power nodes (which have the highest reputations) by using a distributed

ranking mechanism. These power nodes are chosen dynamically and constantly105

updated, so PowerTrust is more robust than EigenTrust towards popular nodes

leaving the network or getting infected. Our solution uses some ideas from

EigenTrust and PowerTrust. Namely, nodes compute local trust values based

on their own experiences with other nodes, but also use gossiping to find out

other peers’ opinions of interacting nodes, which are used to compute global110

trust values for a more informed decision. It also uses pre-trusted peers, which

are di↵erent from node to node, being chosen from the node’s social connections.

In [13], the authors propose an ontology-based trust model, where the net-

work nodes’ behavior is analyzed based on direct and indirect reputation. It

takes advantage of a reputation system to support the decisions that must be115

made by users when they have to choose whether or not to trust another user

during opportunistic encounters. In this situation, trust refers to whether the

encountered node is willing to help the requester node. A node A’s direct trust

in another node B is thus computed based on A’s own experiences with B, in

terms of information retrieval (i.e. general information users usually share in120

a communication environment, such as the contact list, files, a task list, the

location, etc.) and connection service (i.e. granting someone Internet connec-

tion via one of the device network interfaces). Based on the collected data, A

performs an average (simple or exponential) over the last experiences with B.

On the other hand, A’s trust in B is also computed using indirect information125

obtained from other peers in the network, where other nodes’ opinions about B

are weighted using A’s opinion of said nodes. The Interest Spaces trust com-

5

ponent behaves in a similar manner, since a node’s global trust is computed

not only based on the node’s local information, but also based on information

collected from other encountered nodes, helping to create a bigger picture.130

RADON [4] is a reputation-assisted data forwarding solution for ONs that

is based on the notion of positive feedback messages (PFMs). These are special

confirmation messages that help the reputation mechanism monitor the behavior

of a forwarder. They are used by nodes in the network to assess the reputation

of other nodes. RADON evaluates whether an encountered node is a qualified135

forwarder not only in terms of the probability of running into a destination, but

also the encountered node’s real forwarding reputation. The algorithm uses both

first-hand information (i.e. data obtained by collecting PFMs from the network

and analyzing their content), but also second-hand information obtained from

other nodes in the network (not only from the current neighbors, but also from140

previous encounters). Using this information, as well as analyzing the number

of times a relay node has encountered a message’s destination in the past (the

two values being weighted equally), the current node decides whether to forward

the message to the encountered peer.

A social-based trust solution is also proposed in [8] and [7], where the social145

network (with its pre-established friends), its structure, and its dynamics are

used to create a subset of trusted nodes in the network. Moreover, nodes that

are frequently co-located (the so-called familiars), as well as nodes with common

tastes, are employed as the basis of the trust algorithm. This is based on the

assumption that, by becoming contacts on a social network such as Facebook150

or LinkedIn, nodes have prior knowledge of each other. This acts as a contract

of understanding between the nodes, and can also be used for logging in the

system and obtaining a unique ID.

Social Trust [6] is a trust method that leverages social information to estab-

lish trustworthy communication for mobile opportunistic networks. Nodes’ trust155

is social-based, since it is argued that they belong to an opportunistic network

composed of people’s devices (such as smartphones). Thus, socially connected

nodes have an intrinsic trust in each other, since they are likely to interact

6

more often in good conditions. The authors propose two major techniques of

establishing trust: Relay-to-Relay and Source-to-Relay. When using the former160

method, a node that is carrying a message computes the trust in an encountered

peer based on the relationship between the two nodes, while the latter method

assumes that candidate relays are analyzed based on their relationship with the

message’s source. For each of the two trust methods, four ways of computing

a node’s trust are proposed: common interests, common friends, social graph165

distance, and a combination between common friends and social distance. We

have chosen Social Trust for comparison with our solution, because it behaves

the best out of all the solutions proposed here.

As can be seen, there are few solutions that attempt to perform what SAROS

does, namely detect malicious nodes that tamper with messages in the network.170

Other solutions focus on establishing trust that a node can deliver a data item

to its destination, but we would argue that this is actually the entire point of

opportunistic networks (where data routing and dissemination is probabilistic,

and nodes have to “trust” that a relayer can take a message closer to interested

peers). However, this is not the focus of this paper. Instead, we wish to propose175

a solution that attempts to increase the probability that the data that reaches

a destination node is correct and comes from a trusted source.

3. Interest Spaces

Interest Spaces (presented in more detail in [1] and [2]) is a framework for

publish/subscribe-like data dissemination in opportunistic networks. On one180

hand, nodes are able to generate data (thus being publishers) marked with var-

ious tags. On the other hand, nodes can subscribe to topics by specifying that

they are interested in certain tags. Since we are dealing with mobile networks

where there is no central entity to keep track of subscriptions, nodes are only

aware of information about their interests, and those of the nodes they en-185

counter. Thus, solutions that exist in centralized networks cannot be applied in

this situation, which is why we have proposed Interest Spaces.

7

Application

Trust and Security

Opportunistic

Data

Context Interest

Figure 1: Interest Spaces architecture.

The main purpose of Interest Spaces is to provide nodes in an opportunistic

network with information from sources they are subscribed to as quickly and

as e�ciently as possible. It is a multi-purpose framework that allows nodes to190

define an interest area and thus keep data objects marked with the corresponding

tags (i.e. that the nodes are interested in) close to where they are needed.

There are many real-life situations where a framework such as Interest Spaces

would be useful, because it simplifies dissemination by just allowing applications

to mark data items with certain tags, letting the framework handle the caching,195

routing, forwarding, and disseminating. Similarly, applications that need to

subscribe to topics simply have to specify the tags they are interested in, and

the framework does the rest.

There are four layers in the Interest Spaces framework, as shown in Figure 1.

On the highest level there is the application layer, which provides the API for200

all applications using our framework. It provides the basic calls for publishing a

data item marked with at least one tag (interest) and for subscribing to topics.

The second layer of Interest Spaces is the data layer and has two compo-

nents: interest and context. The interest component handles data publishing

and subscriptions based on interests, as a response to application requests. At205

this level, interests are represented internally, a node’s data memory is organized

based on interests, and data items are packed with the necessary information.

The context component is responsible for collecting context information, both

about the current node (such as social connections, location, etc.), as well as

about encountered nodes (encounter history, interest history, etc.). The con-210

8

1 2
m

A B C

1 3
m

D E F

m

1 4
m

G H

m m

1

m m m

m

 A--
 B--
 C--

D++
E++
F++

G++
H++

1

6

9

10

5 7

8

1 A
m

Figure 2: SAROS behavior.

text is used in performing caching and forwarding decisions: nodes decide if

they are suitable for carrying data marked with a certain tag based on context

information collected opportunistically through mobility and node encounters.

The next layer of the Interest Spaces architecture handles trust and security.

This is where SAROS, which is presented in Section 4, is located. At the215

bottom level of the architecture, there is the opportunistic layer. It handles the

communication between nodes, based on the decisions taken at the data and

trust and security layers.

4. SAROS

In this section, we propose and present SAROS (Socially-Aware Reputation220

mechanism for Opportunistic diSsemination), a social-aware reputation mecha-

nism for ONs, which is part of the Interest Spaces framework. We show its basic

functionality, the way it handles trust representation, information gossiping, and

correct messages selection.

4.1. Functionality225

Figure 2 presents the behavior of an opportunistic node employing SAROS

for trust and reputation. It is based on local and global trust values, gossiping,

9

and quorum selection to decide which version of a message is correct, as will be

described in the next subsections. For now, let us assume that node 1 receives

a message m from node 2, which has passed through nodes A, B, and C. Then,230

the node also receives a di↵erent version of the same message, with D, E, and

F on the path. Finally, another copy of message m is received, the same version

as before, with G and H on the path. Since node 1 now has enough copies of

m to decide upon a correct version, it performs the following steps:

1. selects which message version is the correct one (in this case, the one235

received from nodes 3 and 4, since it represents a majority)

2. sends the correct message to the application layer

3. decreases the trust in the nodes from the path of the wrong message version

(A, B, C)

4. increases the trust for the nodes from the correct paths (D, E, F , G, H).240

Node 1 can also meet other nodes, which gossip their own trust information,

as well as other nodes’ trust values. Finally, when node A, which has a bad

reputation, attempts to send a message to node 1, it is denied. Furthermore,

node 1 will not relay any of its messages to A. All the components of the SAROS

solution are presented in details in the following subsections.245

4.2. Trust Representation

The representation of trust in SAROS is similar to the idea used by Eigen-

Trust [11]. Namely, a node computes two types of trust values towards each

peer: a local trust, which is based on the node’s own interactions with other

participants in the network, and a global trust, computed using second-hand250

information gossiped by other nodes.

Each node stores transaction data for each peer it has interacted with in

a separate structure. This structure contains the number of successful and

unsuccessful transactions, based on which the node’s local trust is computed.

The formula for computing the local trust sij of the current node i in node j255

is as follows:

10

sij =
suc(i, j)

suc(i, j) + unsuc(i, j)

Thus, sij is the percentage of successful transactions out of the total trans-

actions between the two nodes. Note that a transaction between node j and

the current node i means that j has been on the path between a message’s des-

tination and node i. If there have been no transactions between i and j, then260

we use an idea similar to the one proposed in the EigenTrust paper. Namely,

we assume that there are pre-trusted nodes in the network, which a node auto-

matically puts its trust in unconditionally. Since we are talking about a fluid

ever-changing network, which does not necessarily have a beginning and an end,

we propose using the connected nodes from the online social networks as the265

pre-trusted nodes.

If there has been no transaction between nodes i and j and they are not so-

cially connected through any online social networks, the local trust is computed

as the minimum between the number of common friends of i and j (normalized

with a pre-set threshold), and 1. Thus, not only directly-connected nodes are270

pre-trusted, but also indirect connections, up to a certain point. In conclusion,

the local trust sij of the current node i in node j is computed as follows:

sij =

8
>>>><

>>>>:

suc(i,j)
suc(i,j)+unsuc(i,j) if suc(i, j) + unsuc(i, j) > 0

1 if i and j are socially connected

min(1, friends(i,j)
MAX COMMON FRIENDS

) otherwise

However, if a node only computes other nodes’ reputations based on its local

trust, it may have a skewed view of the network, or incomplete information that

can lead to wrong decisions. For example, if node i is not socially connected275

to node j and they have no common connections, i will just assume that j is

untrustworthy and will not deliver any messages to it, even if j is well-intended

and can successfully help with dissemination. For this reason, as previously

stated, nodes compute reputations using local trust values from all the other

11

nodes in the network (or at least the ones which the current node has received280

information from).

The easiest way to compute a global reputation would be to average the

local trust values of each node, and compute a final value for the node which is

analyzed. However, malicious nodes working in collaboration might simply lie

about each other’s reputation (setting it to the maximum value), which will lead285

to victim nodes believing that malicious nodes are trustworthy. For this reason,

we use a method of computing the global reputation similar to the one employed

by EigenTrust [11], by computing a weighted average based on the local trust

of the current node in each of the other nodes participating in the computation.

Thus, the global trust value tik of a node i in a node k is computed as follows:290

tik =

P
j
sijsjkP
j
sij

If node i has not received any information about the trust of a node j

regarding node k, then that element is 0 and the local trust in node j is not

added to the denominator sum.

The final value of tik will be a rational number between 0 and 1 which will

act as a probability of trust. Therefore, when a node i meets a potential relay295

j, it will send it messages for delivery and accept its messages with probability

tik. This way, if j is untrustworthy, i’s messages will not be delivered to it, so

it will not have a chance to modify them and spread them further. Moreover,

node i will not help j with its own messages, because they have a very high

chance of being spam messages.300

4.3. Gossiping

As previously stated, other nodes’ local trust values are used in computing

the global trust value of a node. In order for this to happen, this information

must reach all interested nodes. Since we are dealing with opportunistic net-

works where nodes can only communicate directly upon a contact, SAROS uses305

gossiping for exchanging trust data between nodes.

12

Thus, whenever two nodes meet, they not only exchange their own local

trust values, but also the trust values previously received from other nodes.

Thus, assuming that a node i contains no local trust information other than its

own, and it encounters a node j that also knows the local trust value of node310

k, i will end up knowing the local trust values of both j and k. Each of these

received local trust values has a timestamp, and a node only stores the most

recent value. Thus, if i contains a newer value for k’s trust than the one j has,

both i and j will end up with i’s value.

Moreover, in order to avoid malicious nodes spreading false local trust values315

in the network (in order to bump their own reputation), a node i will update

the local trust value of k from j only if i’s local trust in j is higher than the

local trust in the node that originally gossiped k’s local trust value.

4.4. Deciding the Correctness of a Message

Since we have previously established that encryption or the use of certificates320

are not feasible for use in opportunistic networks, a di↵erent method for verifying

the correctness of a message must be used by SAROS. We propose employing a

quorum-based method, which is suitable for ONs since messages are spread in

the network and thus reach a destination multiple times on di↵erent paths.

In SAROS, when an interested node receives a message, it does not send it325

to the application layer directly. Instead, it stores it until several more copies

of the same message arrive (assuming messages have unique IDs). When a

pre-set number of copies of a message arrive, a quorum algorithm is used to

decide which version is the correct one. Thus, each version is counted, and

if the most popular version’s presence is higher than a pre-set threshold, then330

it is considered as the correct one and the message is sent to the application

layer. For version comparison, each message is hashed when it is delivered to

the destination node, and the hashes are compared. This way, di↵ering versions

of the same message can be detected, and a malicious node would not be able

to influence this operation (i.e. it cannot modify the hash, since it is done by335

the node receiving the message).

13

SAROS’ use of a quorum method takes advantage of the mobility of nodes in

an ON. If a malicious node modifies a message it receives, and forwards it, then a

single modified version of the message is sent further upon contact with a node.

It is true that this version might be spread in turn by non-suspecting nodes, but340

so is the original (and correct) version of the message. Moreover, the correct

version starts to spread earlier, so it has a higher chance of getting to more

nodes than the modified version. Furthermore, the employed dissemination

algorithm also attempts to send a message only to nodes that have a high

chance of reaching intended destinations, and there is a high chance that the345

malicious node is not among them. We must also not forget that, once a node’s

reputation decreases, others will start refusing to carry its messages, so the

chance of spreading a modified message increases even further.

A possibility for spreading a false message easier (and to more nodes) is for

the malicious nodes to work in cooperation. This means that, when they receive350

a certain message, they must agree to modify it in the same way. However, given

that nodes in ONs cannot communicate unless they are in range, this might

prove complicated to implement in real-life.

4.5. Increasing Trust

When a node decides which version of a message is the correct one, it in-355

creases the trust of all the nodes on the correct paths, and decreases it for

the nodes on the incorrect paths. The main drawback of this approach is that

non-malicious nodes might have relayed a modified version of the message with-

out knowing, and will thus get their reputation value decreased without doing

anything wrong. However, assuming that the reputation algorithm is good360

enough, nodes will know not to trust a malicious node, so there is a small like-

lihood of this happening. As a potential improvement, nodes from all the paths

can be analyzed, and only nodes that appear on the incorrect paths should have

their reputation decreased. However, malicious nodes can behave badly occa-

sionally, so they can also appear on both correct and incorrect paths, which365

would make a receiving node increase their reputation. We have chosen the

14

first version, because we believe it is better to receive fewer but more correct

messages, as opposed to more but potentially incorrect ones.

This means that, when one of the non-malicious nodes on the path receives

a message from one of the malicious nodes, it should already know that the370

malicious node has a bad reputation, and not forward its messages any further.

This will happen after a time, when the algorithm is able to balance itself. It is

interesting to analyze how long it takes for the algorithm to balance itself, and

how this a↵ects the overall behavior, and we wish to do this as future work.

5. Experimental Results375

In this section, we present the performance obtained by SAROS when com-

pared to other similar solutions for multiple scenarios.

5.1. Experimental Setup

We tested SAROS using MobEmu1 [14], an opportunistic network emulator

that is able to replay a mobility trace and apply a desired routing or dissemina-380

tion algorithm when two nodes meet. We ran SAROS on two traces, Sigcomm

2009 [15] and UPB 2012 [16]. The former was collected using an opportunistic

mobile social application entitled MobiClique. The tracing experiment lasted for

three days and gathered data from 76 smartphones running MobiClique, which

were given to the participants of the Sigcomm 2009 conference in Barcelona.385

The latter trace was collected using an Android application for a period of 64

days in an academic environment at the University Politehnica of Bucharest,

with the participants being 24 students, assistants, and teachers from the fac-

ulty. Contact information was obtained through Bluetooth discovery messages

and WiFi peer-to-peer interactions. We chose real-life traces instead of synthetic390

models because they o↵er a more realistic behavior, and because the traces we

used also contain information about the social connections between the nodes,

as well as their interests.

1https://github.com/raduciobanu/mobemu

15

In all the experiments presented here, data (in the shape of messages) is

tagged with topics that nodes are able to subscribe to. When a node is sub-395

scribed to a topic, it is interested in any data tagged accordingly that it has not

received yet. Every node interested in a certain topic can generate information

tagged with it, but not with other topics. Each node that has at least one inter-

est generates 30 messages per day. A node interested in multiple topics is able

to generate data for each of them, by choosing randomly. We chose to analyze400

the hit rate (percentage of messages that reach interested nodes) corroborated

with the correctness (percentage of correct messages from the ones that were

delivered) for each tested scenario. Thus, we show the correct messages hit rate

for every scenario, computed as the hit rate of correct messages reaching their

destinations, by multiplying the hit rate with the correctness.405

As the data dissemination algorithm over which SAROS is applied, we used

Limited Epidemic, which is a limited-memory version of Epidemic [17]. It

behaves exactly like the original implementation, except that, when the data

memory is full and a new message should be downloaded, the oldest message is

deleted from memory. Unless otherwise specified, we tested with data memory410

sizes of 500, 4500, and 10000 messages. If we assume that a message has 1

MB, then we tested for nodes capable of storing 500 MiB, 4.5 GiB, and 10 GiB

worth of messages, which are plausible values given the capabilities of the latest

smartphones available on the market.

In order to better highlight the benefits of SAROS, we elected to compare it415

to an existing trust and reputation solution for opportunistic networks, namely

Social Trust [6], since we believe it is the most optimal from all the solutions

we previously presented. As shown in Section 2, there are eight possible im-

plementations for Social Trust. For either the relay-to-relay approach or the

source-to-relay approach, there are four filters for analyzing the connection be-420

tween two nodes: social distance, common interests, common friends, and a

combination between the social distance and common friends filters. As the

Social Trust authors show in their paper, the common friends-based filter out-

performs all the other approaches, achieving one of the best cost/success rate

16

trade-o↵s. For this reason, this is the method that we compare SAROS to.425

Since the optimum number of common friends depends on the behavior of the

network, we compare SAROS to Social Trust with the common friends filter set

to values between 2 and 5.

We previously stated that, to be more e�cient, malicious nodes in an op-

portunistic network can not behave badly at all times. Instead, they can some-430

times deliver messages correctly, without modifying them, in order to trick other

nodes into thinking they are not malicious. Thus, the MobEmu implementa-

tion of malicious behavior allows nodes to act badly only a given percentage

of the time. We have a test case where we vary this percentage and analyze

the results, but unless otherwise specified, the malicious nodes act badly all the435

time. The default value for the required number of messages for the quorum

algorithm is 3, and the default percentage of correct messages is 50% (i.e. a

node expects to receive three versions of a message from separate paths, and if

two of them are the same, then that is considered the correct version). Also,

the MAX COMMON FRIENDS constant is set to 1, so if a node i has not440

met a node j and they are not socially-connected, it will compute j’s local trust

as 1 if the two nodes have at least one common friend, and 0 otherwise. We

assume that, upon a contact, nodes can exchange as many messages as they

wish. When testing with malicious nodes in the network, unless specified oth-

erwise, these nodes are chosen starting from the ones with the lowest number of445

social connections, since these nodes are strangers to the others and thus have

a higher chance of wanting to hurt them.

5.2. Results

In this subsection, we present multiple scenarios that highlight the benefits

of employing a trust and reputation algorithm (and SAROS, in particular) in450

opportunistic dissemination. We analyze the results in detail and draw conclu-

sions regarding the benefits of SAROS.

17

5.2.1. Impact of Malicious Nodes on Opportunistic Dissemination

For the first scenario, we want to analyze the impact that non-connected

malicious nodes and their number have in an ON. By non-connected we un-455

derstand that, when a message is relayed to a malicious node, it modifies it

randomly, in a di↵erent manner than another malicious node. This means that,

if two malicious nodes modify the same message, there is a very low chance of

them modifying it in the same way (in MobEmu, we perform a random between

0 and the maximum integer value). A test scenario which will be presented later460

handles the case when malicious nodes act together.

For this scenario, we vary the number of malicious nodes in the network (in

increments of five for Sigcomm 2009, from 5 to 75, and in increments of three

for UPB 2012, from 3 to 24) and analyze the network’s performance in terms of

the metrics previously described.465

Figure 3 shows the correct message hit rates obtained by the six analyzed

algorithms (SAROS, Epidemic, and Social Trust with 2, 3, 4, or 5 common

friends) on Sigcomm 2009 and UPB 2012, for data memories of 500, 4500, or

10000 messages, when increasing the number of malicious nodes in the network.

Figures 3(a), 3(b), and 3(c) show the results for the Sigcomm 2009 trace.470

For Epidemic and Social Trust, the hit rate is constant regardless of the amount

of malicious nodes in the network, because these algorithms do not look at

a message upon its arrival at an interested node. Thus, even if a message

that might be correct arrives, it is sent to the application layer and considered

delivered. However, these results must be corroborated with the correctness of475

each algorithm, which shows that, while SAROS’ hit rate drops with the increase

in the number of malicious nodes, its correctness drops a lot less, especially when

comparing to the other solutions. For a small data memory (i.e. 500, in this

case), SAROS outperforms Social Trust even for few malicious nodes. It is also

important to note that, for this trace, the number of common friends does not480

a↵ect the Social Trust algorithm too much. A problem with Social Trust in

this situation with a small data memory is that it ends up behaving even worse

18

 0.1

 0.3

 0.5

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(a) Sigcomm 2009, 500 messages

 0

 0.3

 0.6

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(b) Sigcomm 2009, 4500 messages

 0

 0.3

 0.6

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(c) Sigcomm 2009, 10000 messages

 0.1

 0.3

 0.5

3 6 9 12 15 18 21 24

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(d) UPB 2012, 500 messages

 0.1

 0.4

 0.7

3 6 9 12 15 18 21 24

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(e) UPB 2012, 4500 messages

 0.1

 0.4

 0.7

3 6 9 12 15 18 21 24

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(f) UPB 2012, 10000 messages

Figure 3: Correct messages hit rates when malicious nodes are present.

than the case where no trust and reputation methods are used, which makes it

unfeasible in networks with many malicious nodes. However, Social Trust does

behave better than SAROS when there is a small number of malicious nodes in485

the network (lower than 45 out of 76 for this trace), for higher data memories.

However, the di↵erences in correct messages hit rates are relatively small, no

higher than 10%.

These results show that, if a network is known to have many fully malicious

nodes, SAROS would be a better solution than Social Trust because it can490

scale better, while still keeping good results for fewer malicious nodes. In some

19

situations, it is also important that as many correct messages as possible reach

their intended targets, even if the total hit rate is lower. In these situations,

SAROS would also be a better fit than Social Trust, especially because its

correctness rate never goes below 60%, even when almost all the nodes in the495

network are malicious. It should also be noted that Social Trust is an algorithm

that takes advantage of social information, whereas, in the scenarios presented

here, SAROS is applied over Epidemic directly. We believe that, if SAROS were

applied to Interest Spaces, the results would be better.

We also show the results for this scenario on the UPB 2012 trace in Fig-500

ures 3(d), 3(e), and 3(f), and it can be seen that, for a trace where nodes are

highly connected (the participants being students at the same faculty, more

often than not from the same group), a socially-aware solution such as Social

Trust outperforms an Epidemic-based implementation of SAROS. However, the

results shown for the Sigcomm 2009 trace still hold, namely that SAROS be-505

haves well for scenarios with a high number of malicious nodes. Furthermore,

the correctness of SAROS does not drop as badly as that of the Social Trust

solution.

5.2.2. Infecting Popular Nodes

In the previous scenario, the malicious nodes were selected starting from510

the ones with the lowest number of social connections, since those were the

strangers that could potentially be malicious, especially under the assumption

that we know the people we are connected to in online social networks. How-

ever, certain nodes might be infected, in which case they start behaving badly

unbeknownst to the node’s owner (i.e. the carrier of the infected device). In515

such situations, algorithms that rely on social connections, such as Social Trust,

might be a↵ected. The same is true for SAROS, which uses social connections

as pre-trusted nodes. The advantage of SAROS in this situation would be that

it only uses the pre-trusted nodes to bootstrap the system. When the quo-

rum algorithm kicks in and starts analyzing messages, the trust values should520

converge towards the correct ones.

20

 0.1

 0.3

 0.5

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(a) Sigcomm 2009, 500 messages

 0

 0.3

 0.6

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(b) Sigcomm 2009, 4500 messages

 0

 0.3

 0.6

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(c) Sigcomm 2009, 10000 messages

 0.2

 0.3

 0.4

3 6 9 12 15 18 21 24

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(d) UPB 2012, 500 messages

 0.1

 0.3

 0.5

3 6 9 12 15 18 21 24

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(e) UPB 2012, 4500 messages

 0.1

 0.3

 0.5

3 6 9 12 15 18 21 24

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(f) UPB 2012, 10000 messages

Figure 4: Correct messages hit rates when popular nodes are infected.

Thus, the only di↵erence between the first scenario and this one is that, in

this situation, malicious nodes are chosen from the nodes with the most social

connections. Figure 4 shows that, for this situation, SAROS clearly outperforms

Social Trust, even for fewer malicious nodes on high data memory situations.525

Only Social Trust with 5 common friends obtains a better correctness than

21

SAROS, and this only happens when less than 35% of the network nodes behave

badly. Furthermore, while the correctness of all the other algorithms drops as

more malicious nodes are added to the network, SAROS is able to maintain an

almost constant value, even increasing it while the number of malicious nodes530

grows. Similarly to the previous scenario, the correctness of SAROS never

goes below 60%. It is also very important to note that, while the correctness of

Epidemic and Social Trust decreases much faster with the increase in the number

of malicious nodes (i.e. compared to the first scenario), SAROS’ correctness is

more or less the same for both scenarios. The same is also true for the hit rate535

of correct messages, as shown in Figure 4. It should also be noted that the best

Social Trust version is the one with five common friends.

Similarly to Sigcomm 2009, the results obtained on UPB 2012 (as shown in

Figures 4(d), 4(e) and 4(f)) for the current scenario show that SAROS keeps

a constant behavior regardless of which nodes are malicious. Thus, the results540

show that SAROS’ correctness is always better than the one obtained by Social

Trust or Epidemic, and that the correct messages hit rate is equal to or better

than for the other algorithms.

5.2.3. Varying a Node’s Malicious Behavior Probability

One possibility for malicious nodes to trick reputation algorithms is to o↵er545

good service sometimes. This way, there is a chance that a reputation system

might believe that a malicious node behaves normally, and would increase the

trust in that node erroneously. For this reason, we varied a malicious node’s bad

behavior probability from 1 (i.e. always act maliciously) to 0 (i.e. never modify

a message) in increments of 0.1. We tested for data memories of 500, 4500, and550

10000, with the number of malicious nodes in the network being about 60% of

the total number of nodes (i.e. 45 for the Sigcomm 2009 trace and 15 for UPB

2012).

The results for the two traces are shown in Figure 5. It can be seen that,

for smaller data memories, all solutions behave similarly on the Sigcomm 2009555

trace, with SAROS behaving slightly worse as the bad behavior probability

22

 0.1

 0.3

 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Malicious behavior probability

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(a) Sigcomm 2009, 500 messages

 0

 0.3

 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Malicious behavior probability

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(b) Sigcomm 2009, 4500 messages

 0.2

 0.4

 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Malicious behavior probability

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(c) Sigcomm 2009, 10000 messages

 0.2

 0.3

 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Malicious behavior probability

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(d) UPB 2012, 500 messages

 0.2

 0.4

 0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Malicious behavior probability

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(e) UPB 2012, 4500 messages

 0.1

 0.4

 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Malicious behavior probability

SAROS
Epidemic

ST R2R CF 2
ST R2R CF 3
ST R2R CF 4
ST R2R CF 5

(f) UPB 2012, 10000 messages

Figure 5: Correct messages hit rates when malicious nodes sometimes behave correctly.

increases. However, for higher data memories, the correct messages hit rate for

SAROS grows slower than for Social Trust. This most likely happens because

the quorum algorithm increases the trust in a malicious node when it o↵ers

good service, and it takes longer for this trust to be dropped back upon a560

wrong transaction. One way to mitigate this would be to assign a higher weight

to a negative transaction, so that a malicious node’s reputation would drop

quicker when it is caught behaving badly. Another solution would be to increase

the number of quorum message copies required, since this would increase the

probability of the node acting maliciously at one point.565

23

The results for UPB 2012, also presented in Figure 5, show that the same

observations hold for this trace as well, only that the correct messages hit rate

of SAROS grows a little quicker.

5.2.4. Malicious Node Collaboration

For this scenario, we assume that malicious nodes act in collaboration. Thus,570

we assume that, whenever a malicious node receives a message and wants to

modify it, it will do so with a pre-set new version. All modified messages will

therefore look the same, so the quorum algorithm will be easier to trick. All the

other testing parameters are set as the ones from the first scenario.

The correct messages hit rates for both traces can be seen in Figure 6. For575

the Sigcomm 2009 case, when nodes have a small data memory (i.e. 500), the

correct messages hit rate when nodes collaborate does not drop very much upon

increasing the number of malicious nodes, when compared to the hit rate when

nodes do not collaborate (only from 0.35 to 0.27). However, node collabora-

tion can be very e�cient when nodes have higher data memories, as seen in580

Figure 6. On the other hand, the largest drop-o↵ starts at about 20 malicious

nodes. Having this amount of nodes in a network of 76 nodes (so approximately

25%) collaborate would be di�cult to achieve in real-life, but it is something

that should be taken into consideration when implementing an opportunistic

network.585

However, as also seen in Figure 6, the same cannot be said about malicious

node collaboration in the UPB 2012 trace. There, regardless of the size of

a node’s data memory, the correct messages hit rates when malicious nodes

collaborate are very close to the ones obtained when no collaboration occurs.

This happens because the trace is dense, and there are many contacts between590

non-malicious nodes. Thus, a message might already be disseminated before

incorrect copies of it appear, so it does not matter that malicious nodes modify

all the messages in the same way.

24

 0.1

 0.3

 0.5

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS (n)
SAROS (c)

(a) Sigcomm 2009, 500 messages

 0

 0.3

 0.6

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS (n)
SAROS (c)

(b) Sigcomm 2009, 4500 messages

 0

 0.3

 0.6

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS (n)
SAROS (c)

(c) Sigcomm 2009, 10000 messages

 0.26

 0.28

 0.3

5 10 15 20 25 30 35 40

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS (n)
SAROS (c)

(d) UPB 2012, 500 messages

 0.1

 0.3

 0.5

5 10 15 20 25 30 35 40

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS (n)
SAROS (c)

(e) UPB 2012, 4500 messages

 0

 0.3

 0.6

5 10 15 20 25 30 35 40

C
or

re
ct

 m
es

sa
ge

s
hi

t r
at

e

Number of malicious nodes

SAROS (n)
SAROS (c)

(f) UPB 2012, 10000 messages

Figure 6: Correct messages hit rates when malicious nodes collaborate (“n” means no collab-

oration, “c” means collaboration).

5.2.5. Impact of the Quorum Algorithm

We have also studied the impact that employing the quorum algorithm to595

select a correct message has on the delivery latency, i.e. the time it takes for a

message to be successfully delivered to interested nodes. Since SAROS waits for

other versions of a message to arrive, the delivery latency is naturally a↵ected,

and Figure 7 shows to what extent. We have performed our analysis on the

Sigcomm 2009 trace, where nodes have a data memory of 500 messages, and600

there are 35 malicious nodes in the network. We have used the lowest delivery

25

 0

 5

 10

 15

 20

SAROS Epidemic ST R2R CF 2 ST R2R CF 3 ST R2R CF 4

D
el

iv
er

y
la

te
nc

y
im

pa
ct

 (%
)

Trust solution

Figure 7: Impact of SAROS on delivery latency.

latency (the one belonging to Social Trust with five common friends) as the

baseline, and we show the percentage that the latency is increased with for all

the other tested solutions.

As can be seen in Figure 7, SAROS’ quorum algorithm increases the delivery605

latency by 16.61%, the most of all the other solutions. However, this happens

on a test case where SAROS outperforms all other solutions in terms of correct

messages hit rate with as much as 18%. The results for other test cases are

similar to the ones shown in Figure 7. We believe that it is more acceptable

to increase the delivery latency if we are guaranteed a higher percentage of610

correct messages spread in the network, since incorrect messages can lead to

malicious data being spread in the network. Although opportunistic networks

are delay-tolerant networks, we wish to further investigate new ways of reducing

the impact in delivery latency in the future.

5.2.6. Impact of Gossiping615

Exchanging trust information through gossiping implies additional data to

be exchanged at each contact between two nodes. We attempt to minimize this

data by using integer values for storing the trust values. Although both trust

parameters can have values between 0 and 1, we represent them as integers

26

between 0 and 100 (e.g. 0.5 is represented as 50). Thus, we only need a single620

byte for each of the two trust values. Each node stores an array of local and

global trust values for each encountered node, so the amount of extra data that

has to be sent by a node upon a contact can be no higher than 2 ⇥ N bytes,

where N is the total number of nodes in the network. Thus, in a network of 100

nodes, only 200 extra bytes need to be exchanged for each contact, which can625

be achieved by Bluetooth in 0.4 seconds (assuming a Bluetooth transfer speed

of 2.1 Mbps), and by WiFi Direct in 0.0003 seconds (for a transfer speed of 250

Mbps). Even for larger networks, the amount of data to be transferred will not

be much higher, since a node only sees a subset of all the nodes in the entire

network. For performance purposes, a node from a large network can only store630

trust data for the most recently encountered nodes, to avoid having to exchange

too much data.

6. Conclusions

In this paper, we have addressed the issue of trust and reputation in oppor-

tunistic networks. We have proposed and presented SAROS, our own approach635

to trust in ONs, which is part of the Interest Spaces framework for opportunis-

tic dissemination. It attempts to detect and punish malicious nodes, in order

to guarantee that a message that is received by a node has not been tampered

with. We have analyzed SAROS’ behavior thoroughly and have shown that it

behaves well in various scenarios. We have tested SAROS while increasing the640

number of malicious nodes in the ON, infecting popular nodes, making malicious

nodes only behave badly sometimes, and making malicious nodes collaborate.

We have compared it to existing solutions and have shown that it outperforms

them in most cases.

In the future, we wish to continue our work by improving SAROS in terms645

of malicious nodes collaboration. Furthermore, we wish to decrease the impact

that our solution has on the delivery latency.

27

References

[1] R.-I. Ciobanu, R.-C. Marin, C. Dobre, V. Cristea, C. X. Mavromoustakis,

G. Mastorakis, Opportunistic dissemination using context-based data ag-650

gregation over interest spaces, in: Communications (ICC), 2015 IEEE In-

ternational Conference on, 2015, pp. 1219–1225. doi:10.1109/ICC.2015.

7248489.

[2] R.-I. Ciobanu, R.-C. Marin, C. Dobre, V. Cristea, Interest Spaces: a Uni-

fied Interest-Based Dissemination Framework for Opportunistic Networks,655

submitted to Computer Networks Journal (September 2015).

[3] Y. Wu, Y. Zhao, M. Riguidel, G. Wang, P. Yi, Security and trust manage-

ment in opportunistic networks: a survey, Security and Communication

Networks 8 (9) (2015) 1812–1827. doi:10.1002/sec.1116.

URL http://dx.doi.org/10.1002/sec.1116660

[4] N. Li, S. K. Das, Radon: Reputation-assisted data forwarding in oppor-

tunistic networks, in: Proceedings of the Second International Workshop

on Mobile Opportunistic Networking, MobiOpp ’10, ACM, New York, NY,

USA, 2010, pp. 8–14. doi:10.1145/1755743.1755746.

URL http://doi.acm.org/10.1145/1755743.1755746665

[5] N. Li, S. K. Das, A trust-based framework for data forwarding in op-

portunistic networks, Ad Hoc Netw. 11 (4) (2013) 1497–1509. doi:

10.1016/j.adhoc.2011.01.018.

URL http://dx.doi.org/10.1016/j.adhoc.2011.01.018

[6] A. Mtibaa, K. A. Harras, Social-based trust in mobile opportunistic net-670

works, in: Computer Communications and Networks (ICCCN), 2011 Pro-

ceedings of 20th International Conference on, 2011, pp. 1–6. doi:10.1109/

ICCCN.2011.6006047.

[7] S. Trifunovic, F. Legendre, C. Anastasiades, Social trust in opportunistic

28

networks, in: INFOCOM IEEE Conference on Computer Communications675

Workshops , 2010, 2010, pp. 1–6. doi:10.1109/INFCOMW.2010.5466696.

[8] S. Trifunovic, F. Legendre, Trust in opportunistic networks, Computer En-

gineering and Networks Laboratory (2009) 1–12.

[9] M. Raya, P. Papadimitratos, V. D. Gligor, J.-P. Hubaux, On data-centric

trust establishment in ephemeral ad hoc networks, in: INFOCOM 2008.680

The 27th Conference on Computer Communications. IEEE, 2008. doi:

10.1109/INFOCOM.2008.180.

[10] C. Rohner, F. Bjurefors, P. Gunningberg, L. McNamara, E. Nordström,

Making the most of your contacts: Transfer ordering in data-centric oppor-

tunistic networks, in: Proceedings of the Third ACM International Work-685

shop on Mobile Opportunistic Networks, MobiOpp ’12, ACM, New York,

NY, USA, 2012, pp. 53–60. doi:10.1145/2159576.2159589.

URL http://doi.acm.org/10.1145/2159576.2159589

[11] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina, The eigentrust algorithm

for reputation management in p2p networks, in: Proceedings of the 12th690

International Conference on World Wide Web, WWW ’03, ACM, New

York, NY, USA, 2003, pp. 640–651. doi:10.1145/775152.775242.

URL http://doi.acm.org/10.1145/775152.775242

[12] R. Zhou, K. Hwang, Powertrust: A robust and scalable reputation sys-

tem for trusted peer-to-peer computing, IEEE Transactions on Paral-695

lel and Distributed Systems 18 (4) (2007) 460–473. doi:http://doi.

ieeecomputersociety.org/10.1109/TPDS.2007.1015.

[13] M. R. P. Goncalves, E. dos Santos Moreira, L. A. F. Martimiano, Trust

management in opportunistic networks, in: Networks (ICN), 2010 Ninth

International Conference on, 2010, pp. 209–214. doi:10.1109/ICN.2010.700

41.

29

[14] R. I. Ciobanu, C. Dobre, V. Cristea, Social aspects to support oppor-

tunistic networks in an academic environment, in: Proceedings of the

11th international conference on Ad-hoc, Mobile, and Wireless Networks,

ADHOC-NOW’12, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 69–82.705

doi:10.1007/978-3-642-31638-8_6.

URL http://dx.doi.org/10.1007/978-3-642-31638-8_6

[15] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, C. Diot, MobiClique:

middleware for mobile social networking, in: Proceedings of the 2nd ACM

workshop on Online social networks, WOSN ’09, ACM, New York, NY,710

USA, 2009, pp. 49–54. doi:10.1145/1592665.1592678.

URL http://doi.acm.org/10.1145/1592665.1592678

[16] R.-C. Marin, C. Dobre, F. Xhafa, Exploring Predictability in Mobile

Interaction, in: Emerging Intelligent Data and Web Technologies (EI-

DWT), 2012 Third International Conference on, IEEE, 2012, pp. 133–139.715

doi:10.1109/EIDWT.2012.29.

URL http://dx.doi.org/10.1109/EIDWT.2012.29

[17] A. Vahdat, D. Becker, Epidemic Routing for Partially-Connected Ad Hoc

Networks, Tech. rep., Duke University (Apr. 2000).

URL http://issg.cs.duke.edu/epidemic/epidemic.pdf720

30

