
Storage Solution of Spatial-Temporal Data
for Water Monitoring Infrastructures used in

Smart Cities
Catalin Negru1, Florin Pop1,2, Mariana Mocanu1 and Valentin Cristea1
1Computer Science Department, University Politehnica of Bucharest, Romania

2National Institute for Research and Development in Informatics (ICI), Bucharest, Romania
3 Department of Computer Science, University of Salerno, Italy

Emails: catalin.negru@cs.pub.ro, florin.pop@cs.pub.ro,
mariana.mocanu@cs.pub.ro, valentin.cristea@cs.pub.ro

Abstract—Smart Cities make use of complex utility infrastruc-
ture systems such as water distribution. These infrastructures
have raised management costs due to improper resource utiliza-
tion and maintenance or aging infrastructure. New innovative
information systems are essential to overcome these issues. Due
to the continuous growth of these infrastructure systems in scope
and scale, lead to the usage of spatial-temporal networks. The
data generated have to be stored in an efficient and scalable way
in order to be used by applications such as spatial and temporal
analytics or monitoring applications.

I. INTRODUCTION

Due to the fact that smart-cities become more intercon-
nected and instrumented we face with rich spatial-temporal
data. Environment monitoring (e.g.river water, air, noise),
trajectories of taxis recorded by GPS devices, social events
with location and timestamps represent spatio-temporal data.
Performing data analytics on these data pose new challenges
such as large data volume, data uncertainty, complex relation-
ship, and system dynamics and bring new opportunities such
as discovering predictive patterns related to time and space.

There are four sectors that need to be integrated in order to
achieve the vision of a smart city: smart water, smart public
services, smart energy and smart buildings. The water distri-
bution system represents a critical infrastructure in a smart
city and management systems and applications are designed
to collect data about the flow, pressure and distribution of a
city’s water. Further, it is critical that the consumption and
forecasting of water use is accurate [1].

Water management infrastructures can manage different
components such as supervisory control and data acquisition
(SCADA) systems, sensors and meters that produce data in
diverse formats and scales. Furthermore, data can come from
geographic information systems, or third party sources such
as stakeholders and industrial water users.

The systems for water resource management need fast,
scalable, reliable and efficient storage systems, in order to
achieve cost reduction, faster and better decision making in
case of accidents of failures in the system.

Moreover, the monitoring of water distribution systems im-
plies large volume of heterogeneous information (e.g. spatial,

sensor and multimedia data) with temporal dimensions. It is
very important to acquire, store, transmit and analyze data in
order to respond in real-time and to alert possible affected
population in case of pollution accidents.

With the explosion of collected data in smart cities it is
necessary to provide an integrated and interoperable system for
storage and data processing in order to provide support in crisis
management situations. Mobile and Cloud based geographical
information systems technologies can improve disaster man-
agement. We have to combine mobile applications, existing
electronic services and data repositories, in an architecture
based on Cloud solutions and existing Big Data approaches;

It is essential to have a scalable environment with flex-
ible information access, easy communication and real time
collaboration from all types of computing devices, including
mobile handheld devices (e.g. smart phones, PDAs and tablets
(iPads)). Also, it is mandatory that the system must be acces-
sible, scalable, and transparent from location, migration and
resource perspectives.

This paper is organized as follows: In Section I is presented
a short introduction related to the need of efficient storage
systems that have to support processing operations on spatial-
temporal data. In Section II is presented related work. In
Section III is presented the proposed architecture. Finally in
Section IV are presented conclusions of the paper.

II. RELATED WORK

In order to integrate heterogeneous data sources, we need
a context-aware approach and an appropriate model to ag-
gregate, semantically organize and access large amounts of
data. Data handling methods have been applied in several
areas including water network data analysis and modeling,
water quality analysis, energy-water relationship, efficiency
modeling of regional water [2].

Applications for spatio-temporal data processing can have
demanding requirements, such as moving large complex data
objects such as digital elevation models, moving points in
space or time series data. Moreover, different datasources must
be combined in order to provide relevant results.



A research direction is to modify relational database man-
agement systems in order to store efficiently spatial-temporal
data. Another approach is to design new engines for database
systems that can handle spatial-temporal data processing chal-
lenges. For instance, the authors of [3] propose a prototype
database system and a framework of a generic index tree
for spatial-temporal data. The main idea is that the index is
based on the conceptual behavior of data and make use of
R-trees and can be defined without any predefined hard-wired
spatial or temporal data types such as intervals or rectangles.
Results show that there are necessary only two important
properties, OVERLAP and SPLIT. First, it checks for spatial
or temporal overlap between objects and second provides
hierarchical decomposition of the data space into subspaces.

In [4] the authors propose HadoopDB a hybrid system that
combine parallel database management systems and MapRe-
duce systems. In this way the running applications can benefit
from the performance and efficiency of parallel databases
and the scalability, fault tolerance, and flexibility of the
MapReduce systems. The main idea is connection of multiple
database systems using Hadoop as the task coordinator and
to communicate through network layer. In this way queries
can be parallelized with MapReduce. The drawback of this
approach is that HadoopDB does not match the performance
of parallel database systems.

Another research direction is the novel definition of declar-
ative languages able to map an ontology into queries for a set
of data sources This method is mainly designed for the case
of integration of multiple heterogeneous relational database
systems [5]. The authors introduce the concepts of Semantic
Identifier and Semantic Join. First, represent a solution for the
problem of entity resolution and the second one is designed
to help in the problem of record linkage. Although, is an
interesting approach, this have to be modified in order to be
used for multiple heterogeneous data sources in the context
of Big Data. Still, we cannot know for sure how accurate the
mapping phase can be when dealing with these type of data
sources.

In [6] the authors propose a spatial-temporal big-data stor-
age system called ”Pyro” tailored for high resolution geometry
queries and dynamic hotspots. It understands geometries inter-
nally, permitting in this way to perform optimized aggregated
geometry queries. The results show that Pyro reduces the
response time by 60X on 1km1km rectangle geometries, when
compared to other similar solutions.

Spatial data mining research area is concerned with the
identification of interesting spatial patterns from data stored in
spatial databases and geographic information systems (GIS).
In [7] the authors present an analysis of a database with
spatial and time stamped data of Slovenian traffic accidents.
They used descriptive statistical methods, spatial clustering
and vizualizations using geographical information systems
facilities.

Teradata1 propose a design for a data management system

1http://www.teradata.com/

with three components storage engine, processing layer and
functions library [8]. Storage engine keep relational data
in databases and non-relational data as deserialized objects,
similar to Blobs. Processing layer is an SQL engine extended
with MapReduce functions. Functions library layer represents
the core element, permitting users to write functions in order
to manipulate and query data that are stored in a library and
results in database tables.

Our approach, in order to overcome the data heterogeneity
in Big Data platforms and to provide a unified and unique view
of heterogeneous data is to add a layer on top of the different
data management systems with aggregation and integration
functions.

III. CLOUD STORAGE ARCHITECTURE FOR WATER
MANAGEMENT

Due to the continuous growth of cyber-infrastructures sys-
tems in scope and scale of the provided applications and data
sources, lead to the concept of ”data lake”. From practical
point of view it is characterized by three key attributes:

• collect everything - a data lake contains all data, both
raw sources over extended periods of time as well as any
processed data;

• dive in anywhere - a data lake enables users across
multiple business units to refine, explore and enrich data
on their terms;

• flexible access - a data lake enables multiple data access
patterns across a shared infrastructure: batch, interactive,
on-line, search, in-memory and other processing engines;
as a result, a data lake delivers maximum scale and insight
with the lowest possible friction and cost.

The following characteristics are important to take into
consideration when design and analyze the storage system:

• file size distribution - is important for I/O optimization;
the file size in workloads depends on the program styles
of specific applications;

• data commonality/data compressibility - determine the
data similarity of files;

• data lifetime - can help to choose an optimum storage
device (e.g., workflows intermediate files and checkpoint
images) are only temporary;

• data open pattern - represents the access modes for file
by specifying parameters in file open call;

• data request frequency - the frequency of access to the
file;

• directory pattern - directory structure of file;
• data locality - some applications exhibit high access

locality, that is, the working sets of multiple application
instances running on different nodes significantly overlap,
while in other cases application instances running on
different nodes have disjoint working sets;

• data consistency requirements.
These characteristics can be exploited through different op-

timization techniques to enhance storage system performance
and to reduce the operation cost, with regard to different met-
rics such as latency, throughput, disk utilization, CPU load. For



Fig. 1. CyberWater Cloud storage architecture

example, buffering can dramatically enhance throughput for
write only workloads. Furthermore, deduplication technique
can save considerable storage space for highly compressible
workloads, but consume more when data need to be accessed.

It is important to note that different optimization techniques
can have a negative impact on the operational cost. For ex-
ample consistency mechanisms might have a negative impact
on write throughput. Consequently, these optimizations do not
generally coexist on the same data pipeline.

A. Proposed architecture

In Figure 1 is presented the architecture of the storage
system for CyberWater project. Data sources layer consist of
various heterogeneous data sources geographically distributed
such as sensor network, spatial data, data suppliers (e.g. GIS,
water treatments plants etc.), and third-party services data
(e.g. ANAR, ApaNova, and other Romanian institutions). In
order to process data first we store it at different Cloud
storage providers, near to data sources. Second, depending
on data needs these data are transfered for processing in a
private datacenter. Moreover, we can buy also cloud processing



services if in a certain use case is more cost efficient to process
data with a cloud service or if the processing capabilities of
our private datacenter are exceeded.

Ingestion layer deals with the process of obtaining and
importing data for storage or immediate use for the case of
real-time alerts service. For the first use case data can be
ingested in batches (e.g. discrete chunks at periodic intervals
of time). In the second use case ingestion happens in real-
time, data being ingested as it is emitted by the source. Data
ingestion process supposes two phases data import and the
data routing to the correct storage engine. For instance, if we
deal with sensor data then we route them to he oracle spatial-
temporal database.

Data storage layer consist of Hadoop Distributed File Sys-
tem. Hadoop provides HDFS and a framework for the analysis
and transformation of very large data sets using the MapRe-
duce paradigm. An important characteristic of Hadoop is the
partitioning of data and computation across many (thousands)
of hosts, and executing application computations in parallel
close to their data. A Hadoop cluster scales computation
and storage capacity and I/O bandwidth by simply adding
commodity servers. Moreover, MapReduce and HDFS may
run on the same set of nodes, which means that the compute
nodes and the storage nodes are hosted on the same machines.
The framework achieves higher bandwidth across the cluster
by scheduling tasks on the same nodes where data is stored.
The Map tasks process input records and write to the local
disk a set of intermediate records.

HDFS stores file system metadata and application data
separately. As in other distributed file systems, like PVFS,
Lustre and GFS, HDFS stores metadata on a dedicated server,
called the NameNode. Application data are stored on other
servers called DataNodes. All servers are fully connected
and communicate with each other using TCP-based protocols.
Unlike Lustre and PVFS, the DataNodes in HDFS do not use
data protection mechanisms such as RAID to make the data
durable. Instead, like GFS, the file content is replicated on
multiple DataNodes for reliability. While ensuring data dura-
bility, this strategy has the added advantage that data transfer
bandwidth is multiplied, and there are more opportunities for
locating computation near the needed data.

On top of HDFS we put different storage engines such
as Oracle spatial-temporal database for sensor and GIS data,
NoSql database for key-value data, document and tabular
store for semi-structured data. Relational databases can handle
various types of data for example sensor data or GIS data.
Every query has the same kind of data location, water
parameters, map and so on. These are all stored in a table
with one column for each piece of data. On the other side we
have multimedia files such as images or videos that can be
attached to an event reporting action. Multimedia files cannot
be represented in the same way as a series of columns. What
can be stored in a relational way is represented by the data
about the files, which is in fact metadata. Alongside with
multimedia files we have social media objects such as blogs,
tweets, and emails, which can be categorized in the category

of non-relational data.

B. Cloud storage systems performance evaluation

In order to test the performance of different cloud storage
providers we upload and download data collected form sen-
sors. Each test was performed 8 times and took the average
value.

Fig. 2. Amazon S3 Latency

Figure 2 presents average upload/download time (ms) for
different file size (Kb) for Amazon S3. It can be seen that
after 512 KB, the upload time grows proportional to the
size. There seem to be little deviations from this rule. The
downloading speed grows slowly for files us to 1024KB and
after that it approximately doubles for each file increase. It can
be observed that upload speeds are approximately five times
slower that download speeds.

Fig. 3. OneDrive Latency

Figure 3 presents average upload/download Time (ms) for
different file size (Kb) for OneDrive. Upload and download
times are aproximately equal with a slight difference for
1024Kb file sizes. Values less than 8Kb may be excluded from
the results, which were inconclusive

Figure 4 shows the uploading and downloading latency for
files of different sizes, where we can observe that copying files
from local to Hadoop file system (HDFS) is much faster than
vice-versa.



Fig. 4. Hadoop Latency

IV. CONCLUSION

In the case of geographically distributed applications Cloud
Computing model may not always be the best choice. In
order to improve offered service, the processing and data
storage needs to be performed closer to the data source.
Real-time applications have small response time in the order
of milliseconds (25ms to 50ms). Processing in cloud will
introduce a significant latency as we have seen between device
and cloud infrastructure. Some alternatives are edge nodes
with computation and storage capabilities (e.g. set-top-box
machines, routers, etc.) which are one-hop away from data
source and can be used to reduce network latency.

ACKNOWLEDGMENT

The research presented in this paper is supported by
projects: ; Data4Water - H2020-TWINN-2015, CSA-690900;
DataWay: Real-time Data Processing Platform for Smart
Cities: Making sense of Big Data - PN-II-RU-TE-2014-4-
2731.

We would like to thank the reviewers for their time and
expertise, constructive comments and valuable insight.

REFERENCES

[1] T. Nam and T. A. Pardo, “Conceptualizing smart city with dimensions of
technology, people, and institutions,” in Proceedings of the 12th annual
international digital government research conference: digital government
innovation in challenging times. ACM, 2011, pp. 282–291.

[2] C. Negru, F. Pop, M. Mocanu, and V. Cristea, “A unified approach to
data modeling and management in big data era,” in Data Science and
Big Data Computing. Springer, 2016, pp. 95–116.

[3] L. Relly, A. Kuckelberg, and H.-J. Schek, “A framework ofa generic
index for spatio-temporal data in concert,” in Spatio-Temporal Database
Management. Springer, 1999, pp. 135–151.

[4] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “Hadoopdb: an architectural hybrid of mapreduce and dbms
technologies for analytical workloads,” Proceedings of the VLDB En-
dowment, vol. 2, no. 1, pp. 922–933, 2009.

[5] M. Leida, A. Gusmini, and J. Davies, “Semantics-aware data integration
for heterogeneous data sources,” Journal of Ambient Intelligence and
Humanized Computing, vol. 4, no. 4, pp. 471–491, 2013.

[6] S. Li, S. Hu, R. K. Ganti, M. Srivatsa, and T. F. Abdelzaher, “Pyro: A
spatial-temporal big-data storage system.” in USENIX Annual Technical
Conference, 2015, pp. 97–109.

[7] N. Lavrac, D. Jesenovec, N. Trdin, and N. M. Kosta, “Mining spatio-
temporal data of traffic accidents and spatial pattern visualization,”
Metodoloski zvezki, vol. 5, no. 1, p. 45, 2008.

[8] M. Whitehorn, “Aster data founders explain unified
approach to data big and small,” 2015. [Online].
Available: http://www.computerweekly.com/feature/Aster-Data-founders-
explain-unified-approach-to-data-big-and-small


