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Abstract—Water distribution systems are an essential part of
modern world. The quality of service in modern times requires
regular maintenance and repairs. The efficient operation is solved
by multiple theoretical and practical approaches related to the
problem of leak detection that range from hardware to software
architectures and cognitive functions. In this paper, a modeling
approach is extended with solutions from the field of Machine
Learning that should allow for an accurate detection of leaks
and the particular type of leaks in water distribution systems.
The challenges of using a calibrated hydraulic model can be at
least partially overcome by using modern unsupervised solutions
that can adapt to the particular scenario.

Index Terms—Leak Detection, Model Simulation, Machine
Learning, Water Distribution System

I. INTRODUCTION

Water distribution systems are an essential part of modern
world while being more of a hidden infrastructure. This
makes it difficult to determine immediate problems that can
cause other problems over long periods of time such as
possible contamination of water, an increased energy usage
and environmental damage [15].

The quality of service in utility networks and the particular
case of water distribution systems is closely related to the
quality of the infrastructure requiring regular maintenance and
repairs.

As new technologies emerging from fields such as
Information and Communications Technology (ICT) are being
regarded as possible solutions to the problem of efficient
maintenance for present infrastructure, there is a great deal of
research on the multiple theoretical and practical approaches
related to the problem of leak detection in mass transfer
systems [12], [13], [14], [15]. There are several traditional
approaches for monitoring the state of the system and for
detection of problems:

A. Hardware solutions such as using acoustic sensors,
gas detectors, negative pressure detectors and infrared
thermography as described in many literature approaches

B. Software solutions using modeling and simulation of flow
and pressure and real-time event monitoring such as SCADA
systems

In the case of hardware solutions, the advantage is given
by the accurate location of identified leaks. It is however an
expensive solution and not very time efficient.

The modeling solutions take into consideration the
Conservation of Mass that assumes measuring the input
and output from the system and setting a threshold on the
difference to signal a leak. It is possible to measure the change
in pressure/flow with some considerations regarding the cost
of the required sensors and the accuracy as stated in [3]. Using
real-time measurements and the comparison with a hydraulic
model is a common model-based approach.

Another possibility is the real-time evaluation of the loss of
pressure/flow in measurement nodes. This method is described
in [16].

In the case of traditional software solutions, the advantage
is given by the reduced amount of time for leak detection,
considering the mass adoption of smart meters, while the
accuracy is closely related to the data acquisition solution of
choice and it is usually not possible to guarantee an exact
location of leaks.

Nonetheless, the aforementioned methods can be
complementary in the sense that software solutions are
recommended for providing the timely detection and a
rough estimation of the location of leaks, while the hardware
solutions can be used for accurate location. The final objective
is to fix the problem in the shortest amount of time and with
minimal costs. This still assumes the role of the operator,
that has to take decisions based on the information that is
provided by the monitoring system.

The introduction of Machine Learning over a great diversity
of fields provides a foundation for a new paradigm where
the cognitive process is shifted from the operator towards the
newly emerging software solutions. Therefore, we can identify
a modern method for leak detection that uses the industry
standard solutions combined with Machine Learning concepts
(C.).

II. RELATED WORK

The traditional approaches that we consider in this paper
are described in numerous papers and are being used and



standardized in the industry. In the case of leak detection using
modeling techniques, there are methods based on steady-state
operation and transient effects. This is also part of a regulatory
framework with requirements for the pipelines transporting
liquid and gas in Germany.

There are several possibilities regarding the choice of
internal sensors that can detect a leak such as pressure sensors,
flow sensors and temperature sensors. In the case of pressure
sensors that are more commonly installed and generally less
expensive, a leak is regarded as a pressure drop ∆p. When
using flow sensors, the leak can be directly measured and the
accuracy is usually higher as described in [3]. These methods
work best under steady-state conditions e.g. during the night
when the consumer demand is low and relatively constant.
There are two types of leak signatures that can be identified:
sudden leaks and gradual leaks [14]. A leak signature analysis
is important to predict false alarms while maintaining accuracy
and a fast response time.

On the other hand, Machine Learning is currently being
used in multiple areas and the concept of learning from the
available data while expanding the knowledge base that is used
for cognitive functions is a kind of self-regulating process. The
adaptability of such methods to various fields allows for a
common set of algorithms that can be used to extract relevant
information from the available data.

According to [5] it is possible to expand the knowledge
base by unsupervised learning, using the k-means algorithm.
In this paper we combine the traditional methods with the
more recent solutions in a proactive approach to water network
management.

III. PROPOSED SOLUTION

We propose the fusion between the traditional model based
approach for leak detection and a modern algorithm for
leak signature classification. The real-time monitoring solution
is based on a SCADA system and a storage solution that
records the measured and simulated parameters. The simulated
parameters can be provided by a hydraulic model or by a
previously identified pattern such as the result of a clustering
algorithm. The modern approach that we propose for leak
detection consists in real-time clustering and classification of
the deviation pattern that is obtained when comparing the
measured and simulated parameters (or when comparing the
normal conditions to the current measurements).

In Fig. 1 is shown an overview of the proposed solution.
There are two alternative methods shown. The first method is
to use a hydraulic model to generate a reference model for
measured data. The second method is to use the data from
a clustering algorithm as a reference, which can reduce the
complexity added by using a calibrated hydraulic model.

The data that we used in this paper is provided by
real measurements using smart meters that were installed
in multiple locations in Italy. The data is represented as
time series for individual consumers that show the daily
measurements with a sampling time of 1 hour over a
time-frame of multiple months. As the data is not correlated

with the network configuration that we use in this paper we
use the measurement data that we assign to a single consumer
node and we estimate the flow for the other nodes using a
hydraulic model.

The model of the water distribution system is represented
by an undirected graph and the fundamental laws that define
the water flow through a pipe are used to calculate the state
of the network based on the available data.

The first law is the mass conservation law that states that
the input flow to a node is equal to the output flow:∑

j

qij −
∑
j

dij = 0, i = 1..n (1)

The second law is the equivalent of Ohm’s law for laminar
flow and gives the value of the flow for a network segment
between two adjacent nodes:

qij =
hi − hj
Rij

(2)

qij =
hi − hj
Rij

(3)

Rij =
8ηlij
πr2ij

(4)

The dynamic model is simulated using a first order filter
with the parameters according to the physical characteristics
of the network segment:

Gij(s) =
1

Tijs+ 1
(5)

We used the following notations:
qij - input flow from node i to node j
d1j - output flow from node i to node j
hi - head (pressure) in node i
Rij - resistance to flow in the pipe from node i and j
η - fluid viscosity
lij - length of the pipe between node i and node j
rij - radius of the pipe between node i and node j
Gij(s) - transfer function of the filter for the pipe between

node i and node j
Tij - filter time constant
s - Laplace transform variable

We propose an extension of the model algorithm to simulate
a first order dynamic model. The unknown variables that are
calculated by the static model are filtered using a first order
model with a time constant proportional to the dimensions of
the pipe (length, diameter) as in eq. (4).

We input the measured data for a given node to the
algorithm and the instantaneous results obtained for a single
sample are being fed back to the subsequent iterations after
being filtered by the corresponding pipe model.

In the same way as there are different types of consumer
patterns (e.g. residential, commercial, industrial), the fault



Fig. 1: Solution overview

conditions can be classified and correlated with these patterns
[2].

In the following paragraphs we define the following
notations for data sets:

D1 - the original measurement data set, RNN ·ND·24

D2 - the altered measurement data set, RNN ·ND·24

SM1 - the simulated measurements using the original data
set, RNN ·ND·24

SM2 - the simulated measurements using the altered data
set, RNN ·ND·24

DSM - the difference between simulated measurements
using SM1 and SM2, RNN ·ND·24

DCSM - the clusters obtained using the difference data set,
RNN ·NC ·24

DFC - the second stage centroids that represent the average
leak patterns for the entire network, RNDC ·24

where:
NN - number of measurement nodes
ND - number of days
NC - number of centroids for clustering
NDC - number of centroids for second stage clustering
When resuming the method to a single node, we consider

the original data (D1) and then we add a simulated leak to
the data set (D2) in order to test different leak scenarios.
The data set for a single node consists in multiple 24-samples
time-series for each day, so it is possible to evaluate the effects
of the leak over a broad range of measurements. Therefore,
we subtract the simulated time-series and the result (RND·24)
is input to a clustering algorithm to extract the leak patterns
(RNC ·24).

In order to obtain an extensive classification on the leak
patterns we consider extending this method to measure the
effects of a leak on multiple nodes in the network. Therefore,
to estimate the data for the adjacent nodes, we use a simulation
model that is described in [3]. We run the simulation for the
entire data set as follows:

We define a constant supply pressure at the input node and
output nodes. Then, the measurements from the original data
set (D1) are assigned to a consumer node and the model returns
the estimated values for the remaining nodes. Therefore, the
model simulation of steady-state conditions is run for each
sample in the time-series and the result is a data set with the
simulated parameters (SM1).

This entire simulation is repeated using the altered data set
(D2) and we obtain the second set of simulated parameters
(SM2). The difference data set (DSM) is calculated by
subtracting the two data sets, Then the clustering algorithm
reveals the common patterns for the test scenario (DCSM)
calculated for each individual node. This allows for a cleaner
representation of the data when compared to the large amount
of original time-series. For a general overview, a second-stage
clustering algorithm aggregates the clusters to define the
general patterns in the network for the analyzed leak scenario.

The difference data set (DSM) can be further used to
generate a fault sensitivity matrix that represents the overall
(average) sensitivity of the network during the analyzed test
scenario as an extension to the static fault sensitivity analysis
described in [3]. The matrix can be used to show a dynamic
overview of the network sensitivity as well as an average
sensitivity of the dynamic model simulation.

We define the following test cases to validate the solution:
A. The constant leak scenario is simulated by adding a step

function (constant value) to the measurements within a specific
time frame (we considered the time frame 12-18)

B. The gradual leak scenario is simulated by adding a ramp
function (linear increasing value) to the measurements

C. The sudden leak scenario is simulated by adding an
impulse function (local value) to the measurements at specific
points in time.

This method uses the data from each measurement node to
find a general pattern for a given leak scenario, that can be used



to evaluate the subsequent leak profiles. This benefits from
accumulating data by expanding the knowledge base in the
sense of a more general representation for a given leak scenario
that can include multiple other particular representations which
are actually part of the same class.

A. Python implementation

The Python language is used for the Machine Learning and
Data Processing algorithms. The data is stored in CSV files
that represent the associated data for a measurement node. The
parsing returns the data to a numpy array that is useful for
processing, providing a standard representation libraries that
are designed for solutions in the field of data science. The
most common Machine Learning algorithms are implemented
in the scikit-learn package that uses scipy as well as numpy
and matplotlib [6].

For unsupervised learning that we require for pattern
identification in the case of both the consumer demand
profile and the leak signature, we use the KMeans
class from the sklearn.cluster package that implements
the automatic grouping of similar data into sets:
kmeans=KMeans(n_clusters=3) The method fit
implements the k-means clustering of the input data that in
different shapes: res=kmeans.fit(data) The algorithm
has three steps, the first is choosing the initial centroids that
can be a sample from the data set. The following two steps
are used iteratively until a certain stop condition is met.
The first assigns samples to the nearest centroid and the
second recalculates the centroids by averaging the previously
assigned samples for each centroid. The results, for example
the cluster centroids can be extracted from the output object:
centroids=res.cluster_centers_

This way, we apply the algorithm to the original data set and
to the altered data set and we obtain two series of centroids
for each measurement node. Then, we calculate the difference
between the corresponding centroids for each particular node
and we apply the algorithm once again to find the patterns for
each test scenario.

IV. RESULTS

The patterns for the simulated data using the original data
set (normal conditions) are shown in Fig. 2 for the first stage
clustering of individual consumers and in Fig. 3 for the second
stage clustering as an overview of the general patterns in the
network.

We present the patterns of simulated data for the proposed
test cases for a better overview of the effects of a leak on
the measured parameters in the network. The difference data
between the normal conditions and the simulated test case
is input to the clustering algorithm and results in a clear
representation of the particular test case.

The first scenario (A) is represented in Fig. 4 and the second
scenario (B) is represented in Fig. 5.

The results show an accurate representation of each test case
with the cluster centroids obtained from the difference data set.
The shape of the centroids is consistent and only the absolute

Fig. 2: First-stage clustering with normal conditions

Fig. 3: Second-stage clustering with normal conditions

value is different as it represents the deviation for a particular
node in the network. As the first model simulates only the
steady-state conditions, the transient effect is not emphasized
in this simulation. Using a simple first-order dynamic model
that takes into consideration the length of the pipes we obtain
the centroids in Fig. 7. The difference from the static model
simulation is given by the first-order delay. In the second
model simulation, the test scenarios are also clearly defined.



(a) Cluster centroids from simulated data (b) Cluster centroids from difference data

Fig. 4: Clustering of simulated data with test case A

(a) Cluster centroids from simulated data (b) Cluster centroids from difference data

Fig. 5: Clustering of simulated data with test case B

(a) Test case A difference clusters (b) Test case B difference clusters

Fig. 6: Test case with dynamic model



(a) Test case A difference clusters (b) Test case B difference clusters

Fig. 7: Second-stage clustering with dynamic model

V. CONCLUSION

In this paper, the modeling approach and hardware solutions
are being referred as traditional methods for leak detection
in water distribution systems. The methods are nonetheless
valuable for the industry and provide a foundation for
higher-level cognitive solutions that emerge from the field of
Machine Learning. The highly technical problem of evaluating
the cause of the leak using specialized sensors and standard
software algorithms is presented in this paper from a different
perspective that arises from unsupervised learning algorithms.
The shift from the high precision requirements of a real-time
sensor data analysis to the Big Data paradigm can be an
important step for increasing the level of mass adoption for
smart infrastructure by reducing the costs associated to high
performance hardware solutions.

The proposed solution is based on the unsupervised
clustering of data from smart meters which allows for a
more accurate evaluation of the root cause of the leak as
this can range from localized damage (e.g. construction works
accidents) to gradual leaks that can be caused by aging
infrastructure. Each of the aforementioned causes can be
represented as a specific pattern that is identified by the
modern solutions.

In the case of enhancing the traditional methods with
modern solutions, the hydraulic model can provide a reference
to the clustering algorithm especially in the case where the data
is not available and has to be estimated. On the other hand, the
clustering algorithm can be used for calibrating the hydraulic
model. The clustering algorithm provides a foundation for
more advanced solutions such as anomaly detection and can
be adapted to any situation that requires extracting relevant
information from vast amounts of data.
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