An extension of traditional methods with modern concepts for leak detection in water distribution systems

Alexandru Predescu

Automatic Control and Computers University POLITEHNICA of Bucharest University POLITEHNICA of Bucharest University POLITEHNICA of Bucharest mircea.predescu@stud.acs.upb.ro

Mariana Mocanu

Automatic Control and Computers mariana.mocanu@cs.pub.ro

Ciprian Lupu

Automatic Control and Computers ciprian.lupu@acse.pub.ro

Abstract-Water distribution systems are an essential part of modern world. The quality of service in modern times requires regular maintenance and repairs. The efficient operation is solved by multiple theoretical and practical approaches related to the problem of leak detection that range from hardware to software architectures and cognitive functions. In this paper, a modeling approach is extended with solutions from the field of Machine Learning that should allow for an accurate detection of leaks and the particular type of leaks in water distribution systems. The challenges of using a calibrated hydraulic model can be at least partially overcome by using modern unsupervised solutions that can adapt to the particular scenario.

Index Terms-Leak Detection, Model Simulation, Machine Learning, Water Distribution System

I. INTRODUCTION

Water distribution systems are an essential part of modern world while being more of a hidden infrastructure. This makes it difficult to determine immediate problems that can cause other problems over long periods of time such as possible contamination of water, an increased energy usage and environmental damage [15].

The quality of service in utility networks and the particular case of water distribution systems is closely related to the quality of the infrastructure requiring regular maintenance and repairs.

As new technologies emerging from fields such as Information and Communications Technology (ICT) are being regarded as possible solutions to the problem of efficient maintenance for present infrastructure, there is a great deal of research on the multiple theoretical and practical approaches related to the problem of leak detection in mass transfer systems [12], [13], [14], [15]. There are several traditional approaches for monitoring the state of the system and for detection of problems:

- **A.** Hardware solutions such as using acoustic sensors, gas detectors, negative pressure detectors and infrared thermography as described in many literature approaches
- **B.** Software solutions using modeling and simulation of flow and pressure and real-time event monitoring such as SCADA systems

In the case of hardware solutions, the advantage is given by the accurate location of identified leaks. It is however an expensive solution and not very time efficient.

The modeling solutions take into consideration the Conservation of Mass that assumes measuring the input and output from the system and setting a threshold on the difference to signal a leak. It is possible to measure the change in pressure/flow with some considerations regarding the cost of the required sensors and the accuracy as stated in [3]. Using real-time measurements and the comparison with a hydraulic model is a common model-based approach.

Another possibility is the real-time evaluation of the loss of pressure/flow in measurement nodes. This method is described in [16].

In the case of traditional software solutions, the advantage is given by the reduced amount of time for leak detection, considering the mass adoption of smart meters, while the accuracy is closely related to the data acquisition solution of choice and it is usually not possible to guarantee an exact location of leaks.

Nonetheless, the aforementioned methods can complementary in the sense that software solutions are recommended for providing the timely detection and a rough estimation of the location of leaks, while the hardware solutions can be used for accurate location. The final objective is to fix the problem in the shortest amount of time and with minimal costs. This still assumes the role of the operator, that has to take decisions based on the information that is provided by the monitoring system.

The introduction of Machine Learning over a great diversity of fields provides a foundation for a new paradigm where the cognitive process is shifted from the operator towards the newly emerging software solutions. Therefore, we can identify a modern method for leak detection that uses the industry standard solutions combined with Machine Learning concepts (C.).

II. RELATED WORK

The traditional approaches that we consider in this paper are described in numerous papers and are being used and standardized in the industry. In the case of leak detection using modeling techniques, there are methods based on steady-state operation and transient effects. This is also part of a regulatory framework with requirements for the pipelines transporting liquid and gas in Germany.

There are several possibilities regarding the choice of internal sensors that can detect a leak such as pressure sensors, flow sensors and temperature sensors. In the case of pressure sensors that are more commonly installed and generally less expensive, a leak is regarded as a pressure drop Δ_p . When using flow sensors, the leak can be directly measured and the accuracy is usually higher as described in [3]. These methods work best under steady-state conditions e.g. during the night when the consumer demand is low and relatively constant. There are two types of leak signatures that can be identified: sudden leaks and gradual leaks [14]. A leak signature analysis is important to predict false alarms while maintaining accuracy and a fast response time.

On the other hand, Machine Learning is currently being used in multiple areas and the concept of learning from the available data while expanding the knowledge base that is used for cognitive functions is a kind of self-regulating process. The adaptability of such methods to various fields allows for a common set of algorithms that can be used to extract relevant information from the available data.

According to [5] it is possible to expand the knowledge base by unsupervised learning, using the k-means algorithm. In this paper we combine the traditional methods with the more recent solutions in a proactive approach to water network management.

III. PROPOSED SOLUTION

We propose the fusion between the traditional model based approach for leak detection and a modern algorithm for leak signature classification. The real-time monitoring solution is based on a SCADA system and a storage solution that records the measured and simulated parameters. The simulated parameters can be provided by a hydraulic model or by a previously identified pattern such as the result of a clustering algorithm. The modern approach that we propose for leak detection consists in real-time clustering and classification of the deviation pattern that is obtained when comparing the measured and simulated parameters (or when comparing the normal conditions to the current measurements).

In Fig. 1 is shown an overview of the proposed solution. There are two alternative methods shown. The first method is to use a hydraulic model to generate a reference model for measured data. The second method is to use the data from a clustering algorithm as a reference, which can reduce the complexity added by using a calibrated hydraulic model.

The data that we used in this paper is provided by real measurements using smart meters that were installed in multiple locations in Italy. The data is represented as time series for individual consumers that show the daily measurements with a sampling time of 1 hour over a time-frame of multiple months. As the data is not correlated

with the network configuration that we use in this paper we use the measurement data that we assign to a single consumer node and we estimate the flow for the other nodes using a hydraulic model.

The model of the water distribution system is represented by an undirected graph and the fundamental laws that define the water flow through a pipe are used to calculate the state of the network based on the available data.

The first law is the mass conservation law that states that the input flow to a node is equal to the output flow:

$$\sum_{j} q_{ij} - \sum_{j} d_{ij} = 0, \ i = 1..n$$
 (1)

The second law is the equivalent of Ohm's law for laminar flow and gives the value of the flow for a network segment between two adjacent nodes:

$$q_{ij} = \frac{h_i - h_j}{R_{ij}} \tag{2}$$

$$q_{ij} = \frac{h_i - h_j}{R_{ij}} \tag{3}$$

$$R_{ij} = \frac{8\eta l_{ij}}{\pi r_{ij}^2} \tag{4}$$

The dynamic model is simulated using a first order filter with the parameters according to the physical characteristics of the network segment:

$$G_{ij}(s) = \frac{1}{T_{ij}s + 1} \tag{5}$$

We used the following notations:

 q_{ij} - input flow from node i to node j

 d_{1j} - output flow from node i to node j

 h_i - head (pressure) in node i

 R_{ij} - resistance to flow in the pipe from node i and j

 η - fluid viscosity

 l_{ij} - length of the pipe between node i and node j

 r_{ij} - radius of the pipe between node i and node j

 $G_{ij}(s)$ - transfer function of the filter for the pipe between node i and node j

 T_{ij} - filter time constant

 \boldsymbol{s} - Laplace transform variable

We propose an extension of the model algorithm to simulate a first order dynamic model. The unknown variables that are calculated by the static model are filtered using a first order model with a time constant proportional to the dimensions of the pipe (length, diameter) as in eq. (4).

We input the measured data for a given node to the algorithm and the instantaneous results obtained for a single sample are being fed back to the subsequent iterations after being filtered by the corresponding pipe model.

In the same way as there are different types of consumer patterns (e.g. residential, commercial, industrial), the fault

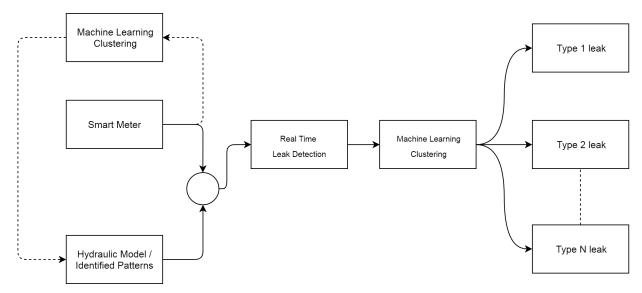


Fig. 1: Solution overview

conditions can be classified and correlated with these patterns [2].

In the following paragraphs we define the following notations for data sets:

D1 - the original measurement data set, $\mathbb{R}^{N_N \cdot N_D \cdot 24}$

D2 - the altered measurement data set, $\mathbb{R}^{N_N \cdot N_D \cdot 24}$

 $\mathit{SM1}$ - the simulated measurements using the original data set, $\mathbb{R}^{N_N \cdot N_D \cdot 24}$

 $\mathit{SM2}$ - the simulated measurements using the altered data set, $\mathbb{R}^{N_N \cdot N_D \cdot 24}$

DSM - the difference between simulated measurements using SM1 and SM2, $\mathbb{R}^{N_N \cdot N_D \cdot 24}$

 \overrightarrow{DCSM} - the clusters obtained using the difference data set, $\mathbb{R}^{N_N \cdot N_C \cdot 24}$

DFC - the second stage centroids that represent the average leak patterns for the entire network, $\mathbb{R}^{N_{DC}\cdot 24}$

where:

 N_N - number of measurement nodes

 N_D - number of days

 N_C - number of centroids for clustering

 N_{DC} - number of centroids for second stage clustering

When resuming the method to a single node, we consider the original data (D1) and then we add a simulated leak to the data set (D2) in order to test different leak scenarios. The data set for a single node consists in multiple 24-samples time-series for each day, so it is possible to evaluate the effects of the leak over a broad range of measurements. Therefore, we subtract the simulated time-series and the result ($\mathbb{R}^{N_D \cdot 24}$) is input to a clustering algorithm to extract the leak patterns ($\mathbb{R}^{N_C \cdot 24}$).

In order to obtain an extensive classification on the leak patterns we consider extending this method to measure the effects of a leak on multiple nodes in the network. Therefore, to estimate the data for the adjacent nodes, we use a simulation model that is described in [3]. We run the simulation for the entire data set as follows:

We define a constant supply pressure at the input node and output nodes. Then, the measurements from the original data set (D1) are assigned to a consumer node and the model returns the estimated values for the remaining nodes. Therefore, the model simulation of steady-state conditions is run for each sample in the time-series and the result is a data set with the simulated parameters (SM1).

This entire simulation is repeated using the altered data set (D2) and we obtain the second set of simulated parameters (SM2). The difference data set (DSM) is calculated by subtracting the two data sets, Then the clustering algorithm reveals the common patterns for the test scenario (DCSM) calculated for each individual node. This allows for a cleaner representation of the data when compared to the large amount of original time-series. For a general overview, a second-stage clustering algorithm aggregates the clusters to define the general patterns in the network for the analyzed leak scenario.

The difference data set (DSM) can be further used to generate a fault sensitivity matrix that represents the overall (average) sensitivity of the network during the analyzed test scenario as an extension to the static fault sensitivity analysis described in [3]. The matrix can be used to show a dynamic overview of the network sensitivity as well as an average sensitivity of the dynamic model simulation.

We define the following test cases to validate the solution:

- **A.** The constant leak scenario is simulated by adding a step function (constant value) to the measurements within a specific time frame (we considered the time frame 12-18)
- **B.** The gradual leak scenario is simulated by adding a ramp function (linear increasing value) to the measurements
- C. The sudden leak scenario is simulated by adding an impulse function (local value) to the measurements at specific points in time.

This method uses the data from each measurement node to find a general pattern for a given leak scenario, that can be used to evaluate the subsequent leak profiles. This benefits from accumulating data by expanding the knowledge base in the sense of a more general representation for a given leak scenario that can include multiple other particular representations which are actually part of the same class.

A. Python implementation

The Python language is used for the Machine Learning and Data Processing algorithms. The data is stored in CSV files that represent the associated data for a measurement node. The parsing returns the data to a numpy array that is useful for processing, providing a standard representation libraries that are designed for solutions in the field of data science. The most common Machine Learning algorithms are implemented in the *scikit-learn* package that uses scipy as well as numpy and matplotlib [6].

For unsupervised learning that we require for pattern identification in the case of both the consumer demand profile and the leak signature, we use the KMeans class from the sklearn.cluster package that implements the automatic grouping of similar data into kmeans=KMeans(n_clusters=3) The method implements the k-means clustering of the input data that in different shapes: res=kmeans.fit (data) The algorithm has three steps, the first is choosing the initial centroids that can be a sample from the data set. The following two steps are used iteratively until a certain stop condition is met. The first assigns samples to the nearest centroid and the second recalculates the centroids by averaging the previously assigned samples for each centroid. The results, for example the cluster centroids can be extracted from the output object: centroids=res.cluster_centers_

This way, we apply the algorithm to the original data set and to the altered data set and we obtain two series of centroids for each measurement node. Then, we calculate the difference between the corresponding centroids for each particular node and we apply the algorithm once again to find the patterns for each test scenario.

IV. RESULTS

The patterns for the simulated data using the original data set (normal conditions) are shown in Fig. 2 for the first stage clustering of individual consumers and in Fig. 3 for the second stage clustering as an overview of the general patterns in the network.

We present the patterns of simulated data for the proposed test cases for a better overview of the effects of a leak on the measured parameters in the network. The difference data between the normal conditions and the simulated test case is input to the clustering algorithm and results in a clear representation of the particular test case.

The first scenario (A) is represented in Fig. 4 and the second scenario (B) is represented in Fig. 5.

The results show an accurate representation of each test case with the cluster centroids obtained from the difference data set. The shape of the centroids is consistent and only the absolute

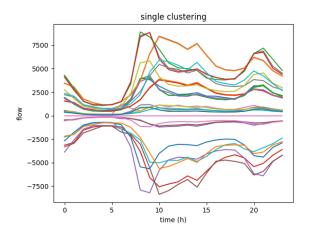


Fig. 2: First-stage clustering with normal conditions

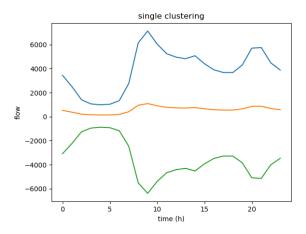


Fig. 3: Second-stage clustering with normal conditions

value is different as it represents the deviation for a particular node in the network. As the first model simulates only the steady-state conditions, the transient effect is not emphasized in this simulation. Using a simple first-order dynamic model that takes into consideration the length of the pipes we obtain the centroids in Fig. 7. The difference from the static model simulation is given by the first-order delay. In the second model simulation, the test scenarios are also clearly defined.

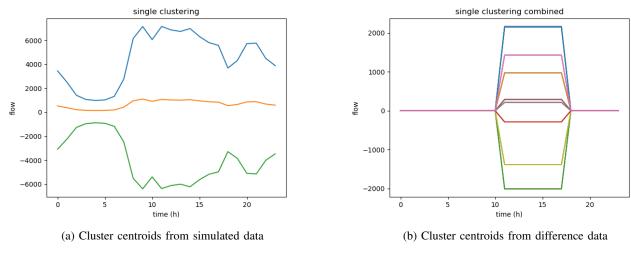


Fig. 4: Clustering of simulated data with test case A

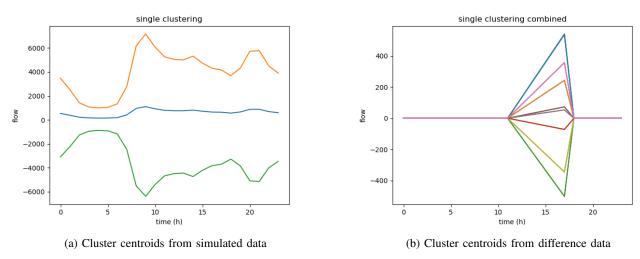


Fig. 5: Clustering of simulated data with test case B

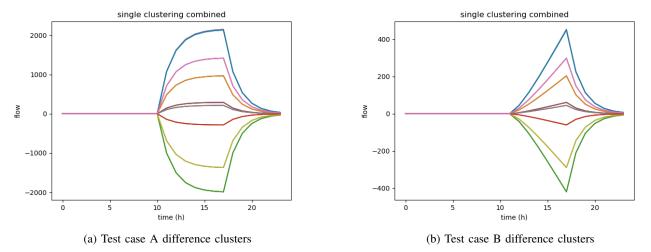
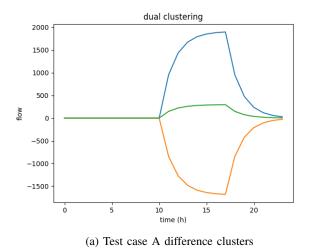


Fig. 6: Test case with dynamic model



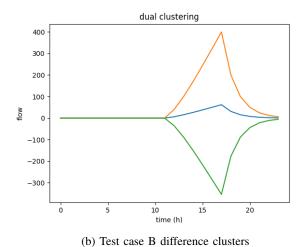


Fig. 7: Second-stage clustering with dynamic model

V. CONCLUSION

In this paper, the modeling approach and hardware solutions are being referred as traditional methods for leak detection in water distribution systems. The methods are nonetheless valuable for the industry and provide a foundation for higher-level cognitive solutions that emerge from the field of Machine Learning. The highly technical problem of evaluating the cause of the leak using specialized sensors and standard software algorithms is presented in this paper from a different perspective that arises from unsupervised learning algorithms. The shift from the high precision requirements of a real-time sensor data analysis to the Big Data paradigm can be an important step for increasing the level of mass adoption for smart infrastructure by reducing the costs associated to high performance hardware solutions.

The proposed solution is based on the unsupervised clustering of data from smart meters which allows for a more accurate evaluation of the root cause of the leak as this can range from localized damage (e.g. construction works accidents) to gradual leaks that can be caused by aging infrastructure. Each of the aforementioned causes can be represented as a specific pattern that is identified by the modern solutions.

In the case of enhancing the traditional methods with modern solutions, the hydraulic model can provide a reference to the clustering algorithm especially in the case where the data is not available and has to be estimated. On the other hand, the clustering algorithm can be used for calibrating the hydraulic model. The clustering algorithm provides a foundation for more advanced solutions such as anomaly detection and can be adapted to any situation that requires extracting relevant information from vast amounts of data.

REFERENCES

[1] D. Garcia, D. Gonzalez, J. Quevedo, V. Puig, J. Saludes "Water demand estimation and outlier detection from smart meter data using classification and Big Data methods", Conference report 2015.

- [2] D. García, D. Gonzalez, J. Quevedo, V. Puig, J. Saludes, Universitat Politècnica de Catalunya (UPC) "Clustering and classification of aggregated smart meter data to better understand how demand patterns relate to customer type", Conference report 2015
- [3] Alexandru Predescu, Mariana Mocanu, Ciprian Lupu, "Modeling the effects of leaks on water distribution systems", 2017, CSCS21, Bucharest, Romania
- [4] M. A. Alsheikh, S. Lin, D. Niyato and H. P. Tan, "Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications", IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1996-2018, Fourthquarter 2014.
- [5] A. L. N. Fred and A. K. Jain, "Data clustering using evidence accumulation", Object recognition supported by user interaction for service robots, 2002, pp. 276-280 vol.4.
- [6] scikit-learn developers (BSD License). http://scikit-learn.org/stable/auto_ examples/cluster/plot_kmeans_silhouette_analysis.html, 2007 - 2017
- [7] Magnus Moglia, Stewart Burn, Stephen Meddings, "Decision support system for water pipeline renewal prioritisation", 2006, ITcon Vol. 11, pg. 237-256
- [8] Alexandru Predescu, Cătălin Negru, Mariana Mocanu, Ciprian Lupu "Real-time clustering for priority evaluation in a water distribution system", 2018, submitted for AQTR2018
- [9] Umar, Muhammad and Uhl, Wolfgang Integrative Review of Decentralized and Local Water Management Concepts as Part of Smart Cities (LoWaSmart), 2016, Norsk institutt for vannforskning
- [10] Felix Iglesias * and Wolfgang Kastner, "Analysis of Similarity Measures in Times Series Clustering for the Discovery of Building Energy Patterns", 2013, Energies Vol. 6, pg. 579-297
 [11] Ciprian Lupu, Doina Chirita, Serban Iftimie, Roxana Miclaus,
- [11] Ciprian Lupu, Doina Chirita, Serban Iftimie, Roxana Miclaus, "Consideration on leak/fault detection system in mass transfer networks", Sustainable Solutions for Energy and Environment, EENVIRO 2016, 26-28 October 2016, Bucharest, Romania
- [12] Rolf Isermann, "Process fault detection based on modeling and estimation methods—A survey", Automatica, Vol. 20, Iss. 4, July 1984, 387-404
- [13] N.C. Turner, "Hardware and Software Techniques for Pipeline Integrity and Leak Detection Monitoring", Offshore Europe, 1991
- [14] Gerhard Geiger, "Principles of leak detection", Fundamentals of leak detection. KROHNE oil and gas, 2005
- [15] Sindre Oven, "Leak detection in Pipelines by the use of State and Parameter Estimation, Master Thesis", Norwegian University of Science and Technology, Department of Engineering Cybernetics, January 2014
- [16] Alexandru Predescu, Mariana Mocanu, Ciprian Lupu "Real time implementation of IoT structure for pumping stations in a water distribution system", 21st International Conference on System Theory, Control and Computing, ICSTCC, October 19 – 21, 2017, Sinaia, Romania