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Abstract: As the complexity of software is increasing, traditional testing 
methods are unable to provide a high level of assurance for critical software 
systems, particularly operating system kernels, which represent the root of trust 
in computing systems. At the same time, formal verification is costly and 
difficult even for small system software such as microkernels, which are  
relied on for applications with high security and/or safety requirements, e.g., 
automotive and cellular radio. Our work closes a trade-off between the strong 
guarantees of formal verification and the flexibility of traditional software 
testing methods such as unit testing. We argue that this trade-off can be  
readily closed by property-based testing. In this paper we present μQC, a  
property-based testing framework for L4 microkernels. We illustrate our 
prototype by evaluating a significant subset of the L4 API (threading and 
scheduling) starting from its specification. 
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1 Introduction 

The software industry has been constantly growing in the last decades and the liability 
and robustness of the software products must match their requirements in order to remain 
competitive. To obtain a stable product, the entire software stack must be reliable. 
Therefore, software testing must be done at each layer of the software stack, starting with 
the lowest level: the operating system. 

While traditional testing methodologies such as unit testing are necessary for software 
projects, they are usually unable to exhaustively cover the input space and the state space 
of complex software systems. As such, they cannot guarantee the absence of bugs. This 
holds true even for operating system software that is designed to be minimal, i.e., 
microkernels, that implement otherwise complex functionality such as scheduling, 
message passing and memory management mechanisms 

A breakthrough in the area of formal verification of systems software was achieved 
by Klein et al. (2009), who devised a formal specification of the seL4 microkernel 
(Elkaduwe et al., 2008) and verified its implementation with respect to the mathematical 
model. The project has shown that formal methods are feasible for real-world software 
verification; however, this achievement required more than 20 person-years of effort 
(Klein et al., 2014), which makes the approach highly impractical. 

We set the goal of testing the implementation of an L4 microkernel using a method 
called property-based testing (Fink and Bishop, 1997), which provides a trade-off 
between the strength of formal verification and the flexibility of traditional functional 
testing approaches. Property-based testing uses the concept of ‘tests as specification’, 
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taking the formal specification of a software component as a set of properties, and using 
them to automatically generate test cases to cover as much of the input space as possible. 

We argue that this approach is suitable for testing an L4 microkernel at the 
application programming interface (API) level, as it allows us to build upon previous 
efforts to formalise its API (Kolanski and Klein, 2006; Elkaduwe et al., 2008). At the 
same time we think that writing new properties requires similar engineering effort to 
write unit tests, as the former are often generalisations of the latter. 

In this paper we describe the design, implementation and validation of μQC, a 
property-based testing framework for an L4 microkernel named VMXL4. We develop 
this framework as a native application running in the microkernel user space, i.e., that 
accesses microkernel functionality via system calls. Unlike other property-based testing 
approaches (see Section 3), we develop the framework using C, as porting the run-time of 
higher-level functional languages requires a sizable effort. 

We bring the following contributions: 

 We design and implement a generic, minimal, practical property-based testing 
framework named μQC, and we port it on an embedded platform running an L4 
microkernel. 

 We develop a minimal set of correct and erroneous programs used to validate μQC 
and provide a set of usage examples. 

 We evaluate the effectiveness of μQC, including the development of μQC properties 
pertaining to a subset of the L4 API. 

The rest of the paper is organised as follows: Section 2 introduces the concepts necessary 
to understand the paper. Section 3 briefly presents existing similar frameworks, used as a 
starting point for μQC. Section 4 discusses the design and implementation of μQC. 
Section 5 provides a proof-of-concept evaluation and a discussion of the trade-offs 
involved in implementing tests using μQC. Lastly, in Section 6 we present an overview of 
the paper and provide perspectives for future work. 

2 Background and related work 

This section places the subject of property-based testing of L4 microkernels in context. 
We first give an overview of microkernels, with a particular emphasis on the L4 family of 
microkernels. Then we outline related approaches for verifying and validating operating 
system kernels. Finally, we describe property-based testing and we propose it as an 
alternative to existing approaches for microkernel testing and verification. 

2.1 L4 microkernels 

L4 microkernels (Liedtke, 1995) are a family of operating system kernels designed to 
meet two basic requirements: minimal performance overhead and a minimal set of 
abstractions exposed to the programmer, leaving the implementation of most system 
functionality as unprivileged user space services. Examples of L4 microkernels include 
Lietdke’s original L4 (Liedtke, 1995), L4Ka: Pistachio (Ruocco, 2008), Fiasco 
(Lackorzynski and Warg, 2009) and seL4 (Elphinstone and Heiser, 2013). 



   

 

   

   
 

   

   

 

   

   4 C. Dragomir et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

The L4 API exposes four fundamental abstractions: threads, scheduling, address 
spaces and communication endpoints; they are used to represent execution, processor 
allocation, virtual memory management and inter-process communication (IPC) 
respectively. Hardware interrupts and other events such as software exceptions and page 
faults are abstracted as IPC calls to a handler thread, while communication with 
peripheral devices is made directly using the functionality provided by the hardware 
architecture (e.g., I/O ports, memory mapping). Moreover, modern L4 interfaces are 
implemented using capabilities (Levy, 1984; Mullender and Tanenbaum, 1986; Shapiro 
et al., 1999; Lackorzynski and Warg, 2009), making them amenable to formal 
specification and verification, as is the case with seL4 (Klein et al., 2009). 

For our work we use VMXL4, a general purpose, high performance L4 microkernel, 
developed by VirtualMetrix, Inc. VMXL4 provides mechanisms for performance 
management and a minimal layer of hardware abstraction on which virtualised operating 
systems personalities can be built. Using the VMXL4 API, trust and security models can 
be implemented. Examples of systems built using VMXL4 are given in Carabas et al. 
(2014), Manea et al. (2015) and Mogosanu et al. (2016). 

2.2 Related approaches for verifying low-level software 

Generally, operating system kernel components such as device drivers are tested 
individually as they are integrated with the kernel. Modern commodity operating system 
kernels are also tested using system-specific test suites such as Linux test project (Larson, 
2002), the FreeBSD Test Suite (Merino, 2013) or stress tests such as the FreeBSD Kernel 
Stress Test Suite (Holm, 2016). There also exist system-independent test tools, e.g., for 
POSIX systems, one such example being Ballista (Koopman and DeVale, 1999). 

In particular, microkernels are often used for high-assurance applications such as  
real-time systems, which require more rigorous approaches: user space components, as 
well as kernel subsystems are extensively tested and/or verified (Revuelta et al., 2006; 
Schierboom, 2007; Brucker et al., 2015). The L4 microkernel API has been formally 
specified using the B method (Kolanski and Klein, 2006; Hoffmann et al., 2007), leading 
to the development of the seL4 protection model (Elkaduwe et al., 2008) and seL4’s full 
formal verification (Klein et al., 2009). Additionally, Verbeek et al. (2015) specify the 
API of PikeOS, a separation kernel based on L4; Baumann et al. (2009) use the verifying 
C compiler (Cohen et al., 2009) to verify safety properties of the PikeOS kernel code; 
Kuznetsov et al. (2010) use selective symbolic execution to test several closed-source 
kernel device drivers. 

The VMXL4 microkernel is tested using a traditional test suite comprising unit tests, 
as well as more complex tests addressing the relationship between different subsystems 
such as scheduling and IPC, which are strongly coupled. Figure 1 shows the architecture 
of the legacy VMXL4 testing infrastructure. The L4 microkernel runs in the privileged 
processor mode commonly known as supervisor mode, while the tests run as user space 
applications. The testing infrastructure is implemented using support libraries, but the 
tests themselves call the L4 API directly in order to verify its functionality. 

We propose that the μQC testing framework presented in Section 4 uses the same 
system-level testing design, with the addendum that additional support libraries may be 
needed, e.g., in order to generate random numbers. 

Each of these verification approaches has its own limitations. Traditional unit testing 
is a standard requirement, but it lacks coverage in terms of the functionality it verifies. 
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Formal methods are a comprehensive approach to system verification, but they incur high 
economic costs (Klein et al., 2009). Model checking and similar methods (e.g., symbolic 
execution) mitigate these costs but they are computationally expensive, being vulnerable 
to the state explosion problem (Valmari, 1998). 

2.3 Property-based testing 

A software testing methodology which addresses the problems left by unit testing is 
property-based testing (Fink and Bishop, 1997; Fernandez et al., 2004; Machado et al., 
2007). Its main advantage is that it covers substantially more test cases than unit testing; 
moreover, it can do exhaustive testing, though the time required to do this is not directly 
proportional to the benefits. This is done using only one generic test, named a property, 
and some functions to generate the inputs, named generators. 

Figure 1 Testing infrastructure running on top of an L4 microkernel 

 

Figure 2 Pseudocode for getMax unit testing 

max = getMax (2, 5) 
assert (max == 5) 

A property is the replacement of a unit test and is run multiple times with different 
automatically-generated inputs. Every run of the property generates a different test. The 
input of the property depends on the type and domain specified by the programmer; 
because the input is generic, the validation conditions of the test must also be generic, 
following a formal specification. The name ‘property’ comes from the type of test 
validation, where each test result must pass a general formal property. A drawback of 
property-based testing is that the formal specification does not usually exist and the 
programmer must infer it from the business and logic specifications. 

A generator is a callback that does random data generation at each running of the 
property. Because complicated non-basic data types may be needed, a property-based 
testing tool must allow user defined generators. In order to achieve a good test coverage, 
the generated data must be uniformly distributed across its domain. 

To illustrate the differences between unit testing and property-based testing, we 
propose the following scenario. We want to test a function named getMax, a function 
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which returns the maximum of two integer values. In a unit test we would hard-code two 
values and test if the output equals to the maximum value. If we want to test multiple 
cases, possibly corner cases, then multiple tests need to be written. A Pseudocode 
implementation of the unit test is shown in Figure 2. 

Using property-based testing, a Pseudocode implementation would be the one from 
Figure 3. As shown, the property is generic and more powerful than the unit test, and it is 
closer to the formal definition of getMax. However, the validation condition is more 
complex and must be correctly determined by the test writer, otherwise the property may 
give false positives or, even worse, false negatives. 

Figure 3 Pseudocode for getMax property-based testing 

a = generator () 
b = generator () 
max = getMax (a, b) 
assert ((max == a || max == b) && 
 (max >= a && max >=b)) 

The quality of the automatic testing tool may be improved by reducing the number of 
failing test case inputs in order to obtain the minimum set of inputs determining a given 
failure, a method known as shrinking. This has the advantage of improving the debugging 
process by providing the programmer with minimal necessary information for this 
purpose. 

We posit that property-based testing provides a powerful trade-off between traditional 
testing and formal methods. Property-based testing provides superior test coverage to 
traditional testing; it relies on a formal model, but it does not require a full refinement 
proof of implementation correctness; unlike state space search methods such as model 
checking and symbolic execution, it explores the system state space at run-time, and thus 
it does not suffer from state explosion. We evaluate this claim in Section 5. 

3 Choosing a framework for property-based testing 

The idea of a property-based testing framework is not new. Previous frameworks have 
been developed, with the most successful ones designed for functional programming 
languages, due to some of their distinctive features: higher order programming, which is 
very useful for properties and data generators, lack of side effects, time of development. 
Moreover, functional programming fits better for random testing than imperative 
programming as it uses fine-grained properties. This section presents an overview of 
some of the most influential existing frameworks and of some open source projects. 

Haskell QuickCheck1 is a popular framework for property-based testing. QuickCheck 
is a tool which automates testing for Haskell programs. As shown in Claessen and 
Hughes (2002, 2011), it does this by defining a formal specification language, which is 
powerful enough to represent common forms of specifications: algebraic, model-based 
and pre-conditional or post-conditional. QuickCheck uses combinators to define 
properties and test data generators, and to obtain the test generated data distribution. An 
important feature of the framework is the shrinking of the generated data when a test 
fails, to give the minimum input which still fails the property. 
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QuickCheck’s success led to the development of property-based frameworks for other 
languages, the most notable being Erlang QuickCheck, ScalaCheck, and QC. 

The programmers who developed Haskell QuickCheck saw the bigger commercial 
opportunity offered by Erlang and developed a new version of the framework2, which has 
its specifications in Erlang. Linking Erlang specifications to code written in other 
languages is easier than in Haskell. Two very important distinctive features of the Erlang 
version are the ability to test stateful systems by using state machine testing and the 
ability to generate and run parallel test cases in order to find race conditions (Arts and 
Hughes, 2003). 

ScalaCheck3 is a property-based testing framework used for programs developed in 
Scala or Java (Odersky, 2010). It was inspired by Haskell QuickCheck and implements 
most of its features, but also some in addition to its predecessor, such as stateful testing. 
Nilsson (2014) provides a comprehensive guide to ScalaCheck. 

System-level programs such as operating system kernels are easier to test using lower 
level programming languages such as C, which implement lightweight run-time libraries 
and are easier to be run even in the absence of an operating system. Thus to develop our 
μQC framework, we started from one of the most popular property-based testing 
frameworks written in C, namely QC. 

Although we have found other property-based testing frameworks written in C, such 
as quickcheck4c4 and Theft5, we chose to make an L4 port of QC (Pennebaker, 2012). 
Our decision was based on the fact that it is the oldest and most stable project 
implementing property-based testing in C. 

4 μQC design and implementation 

μQC intends to test the L4 microkernel API in a functional manner, following the 
property-based testing methodology. It may be used alongside unit tests, as it tries to 
generalise them, but on the long term it may strive to replace unit testing for the VMXL4 
microkernel API. In this section we present the design and implementation decisions for 
the μQC framework and the motivation behind them. We begin by describing the 
implementation starting point and by giving a general design overview. Afterwards we 
provide details regarding specific elements of the framework, ending with the port of 
μQC on an L4 microkernel. 

4.1 Design overview 

Before describing μQC, we will give a short description of the implementation starting 
point: the open source project developed by Pennebaker (2012), at its source code 
snapshot in March 2015. From now on, we will mention it as QC. QC is a basic 
framework for property-based testing of stateless systems. Therefore, it can be viewed as 
a unit test generalisation. In a single test, QC runs the same property for a fixed number 
of times. QC elements include generators, properties and post-conditions. 

Preconditions are a set of predicates that must be true prior to the execution of a 
property and post-conditions are a set of predicates that must be true after the execution 
of an action in the property. If all the preconditions of a property are true, then the 
property is applicable, otherwise it is not. If all the post-conditions of a property are true, 
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then the property has passed. Every property used in a property-based test needs post-
conditions in order to validate the result of its actions. On the other hand, preconditions 
are required only in stateful testing, in order to verify if the actions of the property have 
to be tested in the current state of the system. Therefore, QC does not use preconditions, 
in contrast with μQC, which is designed for stateful testing of an L4 microkernel API. In 
μQC, the only part from QC that is partially used is the test data generation component, 
namely generators, although μQC enhances their functionality by adding further options, 
such as parameters for data generation. Those features will be described in Section 4.2. 
The properties were entirely redefined, in order to make μQC usable for stateful testing 
and as generic as possible. Post-conditions are mentioned just at the theoretical level, 
because in the case of an L4 microkernel those are calls to the L4 API, therefore there is 
no mandatory callback for them. 

The μQC framework is implemented in the C programming language, as QC is, 
because it was the most convenient option taking into consideration the testing 
environment. Porting a new language environment can be difficult, as the native 
environment offered by a microkernel is very low-level. Moreover, implementing a 
POSIX environment can be equivalent with the implementation of an entire operating 
system. Also, because the L4 API had already been written in C, there is no need for 
further linking between different languages. 

Due to the fact that μQC is designed for a stateful system, it uses tests containing 
multiple properties that are used as actions with side effects in the stateful system. 
Therefore μQC borrows some elements from integration testing, a methodology in which 
individual software modules are tested together. Each test consists of at least one 
property, randomly generated from the available properties. Each property has a finite 
number of arguments with known data types at compile time, a fact that provides the 
opportunity to use property-based testing. When at least one of the post-conditions of a 
property has failed, then the test fails, the entire generic test completes and the actions 
taken during the test are printed alongside their input. The second situation in which a test 
fails is when its state becomes inconsistent, meaning that no property has all of its 
preconditions passing and therefore no future action can be taken. When a test fails, the 
programmer sees all the randomly generated data used by the test, making debugging 
easier. 

In μQC, properties are divided in two categories: normal properties and cleanup 
properties. Normal properties are placeholders for actions that the system may take 
anytime, provided the preconditions are satisfied. Because resources may remain 
allocated in the system after running several normal properties and because we want to 
allow tests with a different number of run properties, we introduced the concept of 
cleanup properties; cleanup properties are used to end tests and to free allocated 
resources. Every property-based test in μQC must have at least one cleanup property. If a 
test did not allocate resources, μQC provides the empty_clean_property macro for an 
empty property, whose only purpose is to end the test. Although most of the time only 
one cleanup property will be used for a generic test, having multiple cleanup properties is 
useful in some situations. One can use fine-grained cleanup properties if the system can 
have many internal states. This makes the code cleaner; and, in a system with many 
generic tests, the probability to reuse cleanup properties is bigger if they are fine-grained. 

A higher level design of μQC is shown in Figure 4. The programmer must call μQC 
with an array of normal properties and an array of cleanup properties, as previously 
discussed. To generalise random input and randomly pick properties, μQC uses a seed. 
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When a test fails, the programmer will want to reproduce the exact same sequence of 
properties and inputs to test the fix for the bug. Because the random generation is 
deterministic given the seed, μQC shows it for every generic test so the programmer can 
use that seed if he wants to reproduce the tests. Otherwise, μQC generates a random seed 
to assure random tests and a good test coverage. 

μQC will generate a fixed number of tests, previously given by the user. Another 
available option is the verbosity level for generic tests. The user can see the sequence 
used by every test or only by failing tests. Viewing the sequence used by every test can 
be useful to improve the generic test and its coverage. 

There may be cases where tests will end prematurely, after using only a few 
properties, because μQC may choose and use a cleanup property whenever its 
preconditions are satisfied. To mitigate this, the user chooses the minimum number of 
properties that must be used during a test. 

Figure 4 μQC architecture overview 

 

The last parameter from Figure 4 is the type of statistics shown at the end of the generic 
test. μQC supports two types of statistics for every generic test: user defined and 
automatically generated. The user can choose to see both categories, only one or none. 

4.2 Generator callbacks 

Generators are callbacks that randomly produce input data for properties. A μQC 
generator consists of two callbacks: one to generate the data and the other one to print the 
data, as the C print f function needs different formats depending on the printed type. With 
this approach, the programmer can use complex data structures, such as trees. Because of 
that, the μQC equivalent of a generator is struct generator_printer. 
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μQC offers a set of predefined generators for C basic data types, such as int and char, 
and also for bool, string (stored as a char dynamic array) and generic arrays. Moreover, a 
user can write his own generators or printers and use them for his properties. 

In order to generate arrays, only the basic type generator is needed, because μQC 
offers a wrapper which automatically generates new array types. The array type can have 
fixed or random size in a given range, depending on user needs. All generated arrays are 
dynamically allocated and their memory is freed after their associated property ends. This 
avoids out of memory errors for big tests with many generated arrays; at the same time, it 
can introduce subtle bugs if the user forgets to copy the array contents in case he needs it 
after the property ends. 

Sometimes basic types may need additional features, such as a maximum or 
minimum value. μQC offers two solutions for this. The first one is that miscellaneous 
parameters can be added to generators, in order to modify the generated value to match 
the requirements. The second solution is to change and update the generated values from 
the property code. Both solutions are acceptable for code readability, but in general cases 
the first option should be used, because it’s reusable and only the parameters will be 
changed. 

All generated data for a property are stored in a dynamically allocated array with the 
size in bytes equal to the maximum number of arguments of a property multiplied by the 
maximum size in bytes of an argument type. This approach solves the problem with the 
variable number of property arguments and their different types. The value of the 
generated data is obtained in the property and the user must only know the data type and 
the index of the argument, something that he had already defined in the state machine test 
specification. 

4.3 Properties, preconditions and post-conditions 

Since μQC supports stateful system testing, using a property requires the following steps: 
testing its preconditions, getting the values for the randomly generated data, applying its 
actions and testing its post-conditions. 

The preconditions are optional but if they are missing, the property can be always 
chosen by the framework as the next part of the test. Preconditions are implemented as 
callbacks, differently from the property callback. Because preconditions depend only on 
the internal state, not on the generated data, it is better to obtain the new data only if the 
property can be applied, avoiding generation of useless data, which will be replaced 
afterwards. Therefore, preconditions must be tested before the data generation step and 
this can be achieved by having another callback, associated with a property. This 
approach has another benefit: some preconditions are used by multiple properties and 
having them as functions gives better reusability. If a property does not have any 
preconditions, their callback will be NULL. To address any possible usage, preconditions 
can be used from inside the property too, but this is not a good practice, as explained 
above. 

Actions are the main content of properties, because they change the state of the 
system and their side effects are verified by post-conditions. Actions can be interleaved 
with their post-conditions, which are obtained from the formal specification of the API. 
As opposed to preconditions, post-conditions are located in their corresponding property 
callback, because they depend on the generated data and we do not obtain a performance 
improvement if we have them in separate callbacks. Moreover, if the property contains 
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multiple actions, then it is recommended to check the post-conditions for an action or a 
group of actions as soon as possible, to reduce the debugging time necessary for finding 
the API call that made the system inconsistent. 

Figure 5 Property info callbacks 

 

In order to measure various metrics, μQC offers the possibility to attach user defined 
statistics to a property. After a property ends successfully, each of its statistics callbacks 
is called and the metrics are updated. This can help the user investigate bugs and also 
measure the test coverage of elements that can be accessed during testing, either from the 
generated data or from the internal state of the system, if this data is accessible through 
API calls. By default, μQC logs statistics regarding properties and their sequence. For 
every property, μQC logs the number of total calls, the number of starting test property 
calls and again, for every other property, how many times it followed the current 
property. The default logging done by μQC can be very useful to detect preconditions 
bugs and see if tests are surfacing the desired states. The user decides if he wants to see 
any of the two statistics category when the μQC framework is called to generate and 
validate tests. 

As can be seen in Figure 5, μQC properties are composed of multiple callbacks, 
stored in a structure named property_info. We need an array of generators for the 
property input and another array of user defined statistics to gather various data. On the 
other side, we need a callback for preconditions and a callback for the property itself, to 
make the API calls and test the post-conditions. Having all of those callbacks, different 
components of generic tests become easier to integrate with each other. In addition to 
what was previously discussed, the name field assigns a descriptive name to the property 
and is used for the verbosity option QC_INFO or for failing tests. 

4.4 μQC test logic 

Having all the previously discussed elements, μQC can generate and run tests. Figure 6 
shows a state machine with the actions taken by μQC during a test. Until a test fails or the 
required number of tests have been run, the framework tries to falsify the generic test by 
finding a failing test. 

Starting a test, μQC chooses a property, checks its preconditions (should they exist) 
and, based on the result, picks another property or continues with the current one. The 
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properties are randomly picked from the list of properties which were not tried in the 
current state of the system. Therefore, if in a given state there is no eligible property, 
either the preconditions specifications were too strict or the system is in an inconsistent 
state, meaning a bug was found. If the preconditions have passed, μQC generates test 
data, executes the actions and the post-conditions are checked. If any of the post-
conditions fail, the testing is over, because μQC falsified a sequence of properties. 
Otherwise, the statistics are updated and, if the property is from the cleanup group, the 
current test completes and another test starts; if the property is from the normal group, the 
test continues and another property is chosen. 

4.5 Implementation: porting μQC on an L4 microkernel 

As previously mentioned, μQC runs as an user space application on top of an L4 
microkernel. This means that actions made inside the properties are actually system calls. 
Other than that, porting the framework is easy as long as the environment supports the C 
POSIX library. Of course, specific properties, generators, preconditions, post-conditions 
and statistics need to be written for the system under test. 

Figure 6 μQC test state machine (see online version for colours) 

 

In order to automatically generate test cases, μQC uses the same approach as other 
property-based testing frameworks (see Section 3): it samples values from an input space 
using a random-number generator as a source. We assume that μQC may run in 
environments where high entropy is not always available for random number generation, 
and thus we rely on a pseudo-random generator seeded from any sources of randomness 
that the system programmer may be able to provide. μQC has a random module which  
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currently supports two implementations: the POSIX rand function and the Mersenne 
Twister PRNG. The default implementation is Mersenne Twister (Matsumoto and 
Nishimura, 1998), because it provides better data distribution than rand and always has 
the same output for a given seed, on 32 bits, in contrast with rand, whose result may vary 
depending on the architecture. 

Internally μQC uses a seed for randomising the test data generation and the chosen 
property at every step of a test. Because the VMXL4 native environment is under 
ongoing development and some POSIX functions (e.g., rand) are not yet implemented, 
inside the testing environment the seed is actually a numerical value obtained from a 
hardware timer provided by the development platform. However, the framework does not 
depend on a specific platform and is portable, requiring only POSIX functionality. 

The VMXL4 API is currently being tested using the check unit testing framework for 
C. We designed the μQC interface to be similar the check framework. This makes it 
easier to use and requires little changes in unit tests to convert them to properties. For that 
reason, postconditions can be tested using prop_fail_if and prop_fail_unless, wrappers 
similar to check’s fail_if and fail_unless. 

5 μQC proof of concept evaluation and discussion 

In order to validate μQC as a practical solution for testing the API implementation of L4 
microkernels, we analyse the following aspects: 

 Its effectiveness at finding bugs in generic stateful systems – to show that  
property-based testing can be effectively used to find potential bugs, we devised an 
implementation of a simple circular queue and we specified its behaviour using μQC. 
We artificially introduced bugs in its C code to determine whether the test generator 
will find implementation errors. 

 The expressiveness of property-based testing with respect to L4’s formal model – we 
implemented μQC properties for a subset of the operations provided by VMXL4: 
thread creation, deletion and changing the thread scheduler priority. We found that 
general properties of these operations can be easily expressed as μQC tests. 

 The engineering effort involved in implementing a property-based tester for an L4 
microkernel – we provide an empirical account of our experience with μQC on top of 
VMXL4 and we discuss the potential challenges of providing a full property-based 
test suite. 

The remainder of this section discusses these aspects in more detail. We begin by 
introducing a formal framework that describes the general approach to specifying system 
properties in μQC. We then use this formalisation to illustrate two test scenarios: the 
simple circular queue initially devised to validate μQC, and a proof-of-concept scenario 
to verify a subset of the L4 microkernel API. 

At the end of the section we evaluate the engineering effort of developing μQC and 
adding the new test scenarios. Additionally we discuss the trade-offs of property-based 
tests with respect to other software verification and validation methods. 
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5.1 μQC property formalisation 

As described in Section 4, μQC takes as input a set of properties P and an arbitrary 
system state σ  , and it checks whether properties p  P hold in that state. A property 
is only checked if certain preconditions hold true in the given state, which may be 
interpreted as a form of existential quantification. However, in contrast to existential 
quantification, when a precondition does not hold, the property is vacuously considered 
to be true. This makes it possible to avoid states where the property is not applicable, e.g., 
popping an element from an invalid queue object. 

Each μQC property quantifies universally over a set of states  and a set of 
programmer defined inputs denoted I. In practice μQC randomly generates inputs from I 
and passes them as parameters to the property. Given that μQC is a stateful  
property-based testing framework, checking properties may have side effects, i.e., they 
may cause a system state transition from σ to a state σ’. For example if we want to verify 
how the size of a queue object changes when we add a new element to it, the enqueue 
operation will alter the queue. 

(pre, , post)δ  

where δ is a transition function from a state σ to a state σ’, and pre and post are predicates 
quantified over  and, optionally, I. 

We write pre and post as functions: 

pre : {0, 1}
( , ) logical expression( )

post : {0, 1}
( ) logical expression

I
σ i

σ

 

where 0 is returned if the logical expression is false and 1 otherwise. Similarly, δ is a 
function: 

:
( , ) state transition expression

δ I
σ i

 

Generally, we say that a property P described by (pre, δ, post) holds  σ  , i  I in 
which pre(σ, i) holds, if δ(σ’, i) = σ’, then post(σ’) holds. 

We note that in our design and implementation (Section 4) preconditions are handled 
such that generated inputs cannot invalidate them, i.e., if a precondition pre is 
parameterised over a set of inputs I, then inputs i  I will be generated so that the 
precondition will hold. This is necessary in order to eliminate the need to search for a 
valid input i in a large set I. 

5.2 Circular queue proof of concept 

The first program we used to validate μQC’s effectiveness is an implementation of a 
circular queue, which has been chosen for the following three reasons: it is easier to 
validate new features of the framework with a simpler module, the circular queue is a 
stateful system, with an internal representation for the queue, and it is a portable module 
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which can be used to validate μQC against other property-based testing frameworks such 
as Haskell’s QuickCheck (as described in Section 3). 

The queue library implements an API which exposes the following four operations: 

 init: N  ; n create a new queue of maximum sixe n 

 enqueue: E ×   Ø; (e, Q)  add an element e at the end of Q 

 dequeue:   Ø; Q  remove an element fro the beginning of Q 

 front:   E; Q  return the element from the beginning of Q. 

where E is an arbitrary set of potential queue elements. 
We implemented a test case for each of the operations. Note that in our specification, 

a queue Q and a state σ   are equivalent, as the queue is the only stateful entity in the 
system. This yields the following four properties. 

Property 1: Initialisation 

initpre : {0, 1}
valid( )Q Q

 

init :
( , ) , where init( )

δ
Q n Q Q n
N

 

initpost : {0, 1}
, valid ( ) size( ) 0 maxSize( )Q Q Q Q n∧ ∧

 

where Q, Q’   are queue states, n  N is the maximum size of the queue, valid is a 
predicate that tests whether a given queue was previously initialised, size is a function 
that returns the number of elements in a queue and maxSize is a function that returns the 
maximum number of elements in a queue. 

We make the observation that the definition of valid and the notion of ‘valid queue’ 
relate to the language semantics of C, in which we expect the result of init to be a  
non-NULL pointer. We also observe that n is a parameter of δ, so in practice μQC 
verifies the property by generating arbitrary values of n and using them to create new 
queues. 

We specify enqueue, dequeue and front similarly. Note that Properties 2, 3 and 4 are 
enough to cover the basic specification of the entire circular queue interface. 

Property 2: Enqueuing. 

enqueuepre : {0, 1}
valid( )Q Q

 

enqueue :
( , ) , resulting from enqueue( , )

δ E
Q e Q e Q

 

enqueuepost : {0, 1}
valid( ) 1Q Q n n s n s s s n s s∧ ∧ ( ∧ )∨( ∧ )
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where s = size(Q), s’ = size(Q’), n = maxSize(Q) and n’ = maxSize(Q’). 

Property 3: Dequeuing 

enqueuepre : {0, 1}
valid( )Q Q

 

enqueue :
, resulting from dequeue( )

δ
Q Q Q

 

enqueuepost : {0, 1}
valid( ) 0 0 1Q Q n n s s s s s s∧ ∧ ( ∧ )∨( ∧ )

 

where s = size(Q), s’ = size(Q’), n = maxSize(Q’) and n’ = maxSize(Q’). 
Note that each of Properties 2 and 3 capture in fact multiple aspects of the circular 

queue: 

1 maxSize is invariant under enqueue and dequeue 

2 size varies only between 0 and maxSize 

3 enqueue and dequeue will fail when s = n, and respectively when s = 0. 

Property 4: Peeking the front of the queue 

frontpre : {0, 1}
valid( ) 0Q Q s∧

 

front :δ
Q Q

 

frontpost : {0, 1}
front( ) exprected( )Q e Q e E e∧ ∧

 

where s = size(Q), e is the return value of front(Q), E is an arbitrary set of potential 
elements from Q and expected is a predicate that tests the value of e against the expected 
value at the front of the queue. 

We implemented expected by using a reference queue in the implementation of each 
of Properties 1 to 4: we initialise a simple array of random size and randomly generated 
elements to be enqueued/dequeued in Q. We hold two pointers to the array, representing 
the back and the front of the queue respectively. We update the two pointers on each 
application of Properties 2 and 3 and we check the value of front(Q) against the front 
value in the array. 

To test the circular queue implementation we instructed the framework to 
automatically generate a large number of test cases with a different number of properties 
and different sequences of properties, each with automatically generated different inputs. 
As can be observed, the difference in the code logic complexity is not significantly 
different for unit testing and property-based testing, but the benefits of the latter are 
significant. When different bugs were introduced on purpose in the queuing logic, μQC 
detected all of them, using only the four properties. 
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For example we artificially introduced a bug in the circular queue implementation and 
tested it using μQC. The bug consists of a corner case where on an enqueue operation, the 
check for maxSize is omitted. The test fails when checking postenqueue; more specifically, 
both the assertions size(Q) = maxSize(Q) and size(Q) < maxSize(Q) fail. After fixing the 
bug, μQC validates the implementation and reports that all the tests are passed. 

5.3 Tests for L4 thread operations and scheduling 

As shown in related work (Kolanski and Klein, 2006; Elkaduwe et al., 2008), the L4 
microkernel API is small enough to be described using formal modelling. Unlike 
monolithic kernels, L4 microkernels provide a minimal set of abstractions for users: 
threads, scheduling, inter-process communication and memory management. The existing 
testing infrastructure already provides unit tests for each of these mechanisms. 

Modern L4 APIs are based on capabilities (Lackorzynski and Warg, 2009). From the 
user’s point of view, kernel objects (e.g., threads, communication end-points) can be 
addressed via L4 system calls using tokens named capability pointers, which are mapped 
at run-time to the objects themselves by the microkernel. Although we did not develop 
any properties related to capabilities, we had to use the latter to keep track of some of the 
kernel objects that were created or deleted at run-time. 

As an exercise in testing the L4 API using μQC, we chose to look at the following 
aspects regarding threads and scheduling: 

 Thread creation should succeed when invoked on a valid ‘empty’ capability (a slot in 
a capability space that does not contain a capability). Conversely, thread deletion 
should succeed when invoked on a valid capability to a thread. 

 Thread creation should fail when invoked on a ‘non-empty’ capability (a slot that 
already addresses a kernel object). Conversely, thread deletion should fail when it is 
given an ‘empty’ capability. 

 Thread creation and deletion should fail when invoked on a non-‘valid’ capability 
pointer, i.e., a pointer to a non-existing slot in a capability space. For the sake of 
simplicity, we only stated this property for thread creation, and additionally we 
referred to capability pointers as indices in lists (which could possibly go  
out-of-bounds), although microkernels such as seL4 implement hierarchical 
addressing schemes using guarded page tables (Liedtke and Elphinstone, 1996; 
Elkaduwe et al., 2008). 

 Since L4 does strict priority scheduling (Ruocco, 2008), higher-priority threads 
should always run before lower-priority threads. 

We implemented μQC properties for these particular mechanisms because they are 
straightforward and easy to understand and implement by system programmers with a 
small degree of familiarity with L4 microkernels. However, we think that the 
formalisation below can be easily extended to other L4 microkernel abstractions; or full 
formalisations such as the one in Kolanski and Klein (2006) can be potentially reused. 
We discuss this aspect in more detail at the end of this section. 

We denote threads as τ1, τ2, …, τi  T, and capability pointers as c1, c2, …, ci  C; we 
refer to non-existing threads using the special thread   T (a so-called ‘nil thread’). We 
refer to thread creation and deletion using the operations e = C(ci) and e = D(ci) 
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respectively, and setting a thread’s scheduler priority as e = S(ci, p). e  ε is an error 
condition and p is a positive number denoting a thread’s priority.6 

Additionally we denote the validity of a capability c (as per the previous definition of 
‘valid’) by considering a subset Cv  C, such that c  Cv, a predicate v(c) holds. Given a 
valid capability c that points to a thread τ, we denote this as p(c, τ). In this paper we 
assume that any valid capability pointer points either to an existing thread τ or to the ‘nil 
thread’, i.e., an empty capability slot, denoted as τ = . 

In Properties 5 to 8 we use σ   to refer to the state of the L4 microkernel. All the 
previously defined functions implicitly depend on the microkernel state, e.g., v(c) is in 
fact a function v(c, σ), as a capability may be valid in a given state, but invalid in another. 
Since we do not have access to the internal state of the microkernel, we implement v( ) 
and p( , ) as part of the test suite and we keep track of each thread creation/deletion 
operation. To avoid ambiguities in the formal language, we explicitly quantify σ in pre, 
post and δ, but we leave functions implicitly parameterised by the state quantified in the 
predicate/function. 

Property 5: Thread creation/deletion (1). 

thread1pre : {0, 1}
( , ) ( )

c
σ c v c

 

thread1 :
( , ) , derived from :

if ( , ) then ( ) else ( )

δ c
σ c σ

p c e C c e D c
 

thread1post : {0, 1}
OKQ e

 

That is, given a valid capability pointer c and a thread τ, and p(c, τ), then either τ =  and 
C(c) succeeds, or τ   and D(c) succeeds. In both cases, e = OK. 

Property 6: Thread creation/deletion (2). 

thread2pre : {0, 1}
( , ) ( )

c
σ c v c

 

thread2 :
( , ) , derived from :

if ( , ) then ( ) else ( )

δ c
σ c σ

p c e C c e D c
 

thread2post : {0, 1}
InvalidThreadQ e

 

That is, given a valid capability pointer c and a thread τ, and p(c, τ), either τ =  and D(c) 
fails, or τ   and C(c) fails. In both cases, e = InvalidThread. 

In the context of Properties 5 and 6 we make the observation that InvalidThread is a 
generic error, and it may be returned when v(c) holds. This assumes that at run-time the 
system designer knows for example the structure of the capability space, and can 
distinguish between invalid and valid but improperly used capability pointers. 
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We also remark that Properties 5 and 6 could have been decomposed into four 
properties, or defined altogether as a single property. We chose to group them by the 
expected error condition for convenience reasons. 

Property 7 specifies the expected behaviour for invalid threads. 

Property 7: Thread creation/deletion (3). 

thread3pre : {0, 1}
( , ) ( )

c
σ c v c

 

thread3 : {0, 1}
( , , ) , derived from :

if 0 then ( ) else ( )

δ c
σ c i σ

i e C c e D c
 

thread3post : {0, 1}
Invalid ThreadQ e

 

That is, given a capability pointer c such that v(c), both C(c) and D(c) fail with  
e = InvalidThread. C( ) and D( ) are selected based on an input i  {0, 1}. 

Although Properties 5, 6 and 7 were initially implemented as generalisations of 
existing unit tests, running them together helped us find a bug in the user space L4 thread 
utility library, more specifically in the thread creation function. Creating a thread using 
the utility library from within μQC automatically helped us detect that the library 
function was not checking the return value of the thread creation kernel system call, and 
so it was always returning OK. Thus in a μQC run in which postthread1 was followed by 
postthread2, the latter failed because it was expecting the utility function to return 
InvalidThread. Given that in L4 a thread’s stack is allocated by another user space thread 
(in our case, the tester’s thread), this also helped us discover that multiple stacks would 
be created by the utility function even when thread creation failed. This is a potentially 
dangerous bug, as such behaviour can lead to the situation where the system runs out of 
memory and ultimately crashes. 

Finally, in Property 8weillustrate a simple case in strict priority scheduling, consisting 
of two threads of potentially different priorities which are simultaneously runnable on a 
single- CPU system. For this purpose, we introduce a predicate runsBefore: T × T  {0, 
1}; runsBefore (τ1, τ2) implicitly performs a temporal check of the order in which τ1 and 
τ2 run and holds whenever τ1 has at a given moment ‘run before’ τ2. As any thread τ is 
accessible from user space only through its capability c, we quantify it using p(c, τ). 

Property 8: Ordering in strict priority scheduling 

sched

1 2 1 1 1 2 2

1 2 1 2

pre : {0, 1}
, , , ,

c c
σ c c v c p c τ p c τ

τ τ τ τ
 

sched

1 2 1 2

1 1 1 2 2 2

:
, , , , , derived from :

, ; ,

δ c c
σ c c p p σ

e S c p e S c p

N N
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sched

1 2 1 2 1 1 1 2 2

post : {0, 1}
, , , , OK , ,

c c
σ c c p p e p c τ p c τ

N N
 

1 2 1 2

1 2 2 1

runsBefore ,

runsBefore ,

p p τ τ

p p τ τ
 

That is, given two distinct threads τ1 and τ2, τ1   and τ2  , and two capabilities c1 and 
c2 such that p(c1, τ1) and p(c2, τ2), then for any p1, p2, S(c1, p1) and S(c2, p2) will succeed  
(e = OK) and one of these events will occur: 

 if p1 > p2 then τ1 will run before τ2 

 if p1 < p2 then τ2 will run before τ1 

 otherwise τ1 and τ2 can run in any order, depending on the order they have been 
placed in the kernel’s scheduling queue. 

Note that this property might not hold on multi-processor systems where τ1 and τ2 could 
be scheduled on different processors; we take this scenario into account in μQC by 
explicitly pinning threads to a given CPU. We implement runsBefore by simply setting a 
variable that is shared between τ1, τ2 and the tester’s thread: both threads synchronise with 
the tester, after which the tester checks the variable’s value to determine which thread set 
it last. 

5.4 Test engineering effort and limitations 

First we detail the effort invested into developing μQC itself. The work in Section 4 
required about six man-weeks of full-time involvement. This includes the initial design, 
porting the original QC on top of VMXL4, integrating various components such as a 
random number generator and enhancing μQC to fully support stateful testing and 
statistics collection. As VMXL4 is a proprietary microkernel and requires extra time to 
study, we consider the development of the μQC framework to be a success. 

Writing the circular queue implementation and its properties required approximately 
one man-day. Writing the L4 API proof of concept properties was done in approximately 
seven man-days. A large part of this time was spent fixing bugs found by μQC either in 
user space libraries or in the test cases themselves; the latter was needed due to 
differences in assumptions about the system state in unit testing and property-based 
testing. Because the properties described in this section were fairly simple, no bugs were 
found in the microkernel itself. 

We argue that this work can be extended to encompass a significant portion of L4’s 
formal model with a moderate amount of effort. Further enhancements could be brought 
to μQC to support more elaborate preconditions and thus combine properties from 
different test cases (e.g., scheduling, threading and inter-process communication, memory 
mapping, address space management and thread management), resulting in complex  
run-time scenarios to stress-test the microkernel. 

We show that μQC allows a flexible approach to verification, by allowing us to test a 
partial specification of the L4 microkernel. This flexibility extends to the properties 
themselves: other automated methods such as model checking and symbolic execution 
greatly depend on how system properties are specified, e.g., certain approaches to 
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specification may cause state explosion; in contrast, property-based testing does not rely 
on a particular approach for specifying properties, although we acknowledge that some 
approaches could cause properties to never be applied, e.g., if a precondition is never 
satisfied. In this case the trade-off is that a subset of the system states may never be 
reached at run-time, which would potentially prevent rare bugs from being found. 

Another trade-off of μQC is the granularity of tests: while other approaches may for 
example permit reasoning about local variables in functions, property-based testing is a 
so-called ‘black-box’ approach, and thus we cannot explicitly verify the internal state of a 
function that we put under test. In the case of the L4 microkernel API, and particularly 
for the properties specified in this section, we mitigated this issue by maintaining 
‘shadow state’, e.g., the testing framework maintained its own list of capabilities and 
their state of being valid or empty. We think this is a potential challenge in scaling 
property-based testing to the entire L4 API, and we will address it in future work. 

Finally, since property-based testing is a dynamic analysis method and the system 
under test is a black box, we currently have no way of rigorously determining the level of 
quality assurance offered by our approach, e.g., which parts of the microkernel state 
space were reached by μQC. In the future we plan to devise metrics that allow us to 
visualise the impact of a test run on finding bugs and/or how many runs are needed for 
the testing to be statistically significant in terms of the assurance it provides. 

6 Conclusions and further work 

Software quality assurance is a challenging and often costly task that scales poorly with 
system complexity. This aspect carries more weight in critical systems, where the 
absence of errors needs to be guaranteed by the system designer. Moreover, even  
non-critical software containing bugs such as security vulnerabilities can incur major 
financial costs for companies. 

This paper is built on the premise that the core component of any complex software 
system, its kernel, requires a testing method that relies on sound design principles, but on 
the other hand can be applied in a flexible manner. We adhere to the idea that property-
based testing is such a solution and thus we set to use it to test the API of an L4 
microkernel. 

We designed and implemented μQC, a property-based testing framework for L4 
microkernels. Unlike existing test suites for L4, which verify the most common use cases, 
μQC uses properties, a powerful abstraction that allows tests to cover most of the input 
space. 

μQC is an automated testing tool written in C which runs in the native environment of 
an L4 microkernel and whose purpose is to test the microkernel API in a functional 
manner. Because the microkernel is a stateful system, the framework allows the testing of 
multiple controlled series of operations, besides the usage of random generated input. In 
order to obtain a thorough testing, μQC offers support for generating any data type, using 
predefined generators which can be combined to obtain new test data generators. 

We used μQC to provide a proof of concept on the top of the VMXL4 microkernel. 
We implemented a minimal test scenario to validate μQC itself, then we built a number of 
properties that cover a subset of the L4 API. We showed that μQC is an effective tool for 
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finding bugs, and that formally defined properties can be easily implemented as μQC 
tests. 

In the future we aim to enhance μQC’s bug-finding capabilities, by providing 
shrinking for failing tests. We also believe μQC should be able to handle more complex 
scenarios that test the interworking between the various L4 microkernel mechanisms. 
Finally, we wish to be able to use μQC to reason about the level of assurance provided by 
the test scenarios generated using property-based testing, and, ideally, automatically 
provide guarantees regarding the absence of bugs in L4 microkernels. 
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Notes 
1 https://hackage.haskell.org/package/QuickCheck 
2 http://www.quviq.com/products/erlang-quickcheck/ 
3 https://www.scalacheck.org/ 
4 https://github.com/nivox/quickcheck4c 
5 https://github.com/silentbicycle/theft 
6 In L4 priorities are numbers between 0 and 255, with 0 representing the lowest priority (that of 

the Kernel’s idle thread) and 255 the highest. In our representation of the properties we assign 
priorities between 100 and 200, due to other priority ranges being used for system services 
such as the console, interrupt threads, etc. 


