
BigScale: automatic service provisioning for Hadoop
clusters

Dan Huru and Cristian Eseanu and Cătălin Leordeanu and Elena Apostol and Mariana Mocanu and Valentin Cristea
Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Romania

Email:alexandru.huru2208@cti.pub.ro, eseanu.cristian@cti.pub.ro, {elena.apostol,
catalin.leordeanu, mariana.mocanu, valentin.cristea}@cs.pub.ro

Abstract—As the number of interconnected devices grows
in the IoT space, data processing systems require increased
resources, robustness and flexibility. In this sense the scalability of
a system becomes very important. A scalable system can process
variable data volumes, requires less costs for maintenance and
allows for fault tolerance and high availability. While horizontal
scalability is offered by multiple Cloud providers, vertical scala-
bility is a less addressed topic. In this article we first define the
meaning and outline the benefits of doing vertical scalability. We
also present a scaling solution which can automatically provision
services based on the needs and resource usage of the system.

Keywords—scalabilty, elasticity, resource provisioning, BigData,
IoT

I. INTRODUCTION

Today various embedded devices are capable of commu-
nicating and sharing data using the Internet. In this manner
traditional web services are enriched with physical world
services. In addition to the IoT vision, which gives every device
an IP address and interconnects them, there is also the notion
of Web of Things (WoT) which enables the devices to speak
the same language.Current real-time processing is mainly
done on existing web data but the extension to considerably
larger amounts of data produced by multiple sensor networks
requires research and design of robust and scalable processing
platforms.

Scalability can be described as the capacity to handle
increasing workloads [1], or the ability to improve performance
when resources are added [2]. In many articles (e.g. [3] and
[4]) scalability is divided into two main categories:

• Vertical scalability : adding resources to the same
logical unit (e.g. to a cluster node)

• Horizontal scalability: adding multiple units of re-
sources [4] (e.g. adding multiple nodes to a cluster)

According to [5], scalability is important if it is useful. The
multiple definitions of scalability try to take into account
what is useful for the domain and to prove a point about the
system/algorithm/application performance, how certain work-
flows affect the system, cost efficiency and the ability of a
system/application to scale.

While horizontal scalabilty is achieved at the infrastructure
level by many Cloud providers, services can also be scaled to
further optimize existing applications.

Some of the benefits of this type of scaling can be:

• Greater precision when measuring service utilization

• Enforcing SLAs or quality levels

• Cost optimization

• Personalized usage/Usage patterns

• Less interventions from cluster adminstrator

In this paper we propose a solution that does scaling
for Hadoop based applications, in a Cloud environment. It
employs three stategies: utilize fewer resources, maximum
throughput, keep resource utilization under a threshold. The
application includes automatic and manual resource allocation
and a metrics monitor.

The paper has the following structure: first we review
related work and state of the art in chapter II. In chapter
III we propose our high-level solution while in chapter IV
we showcase implementation details. Chapter V describes the
experimental results and we conclude our work in chapter VI.

II. RELATED WORK

A. Node scaling

The most established Cloud Providers that achieve auto-
matic scaling are described below.

Amazon Elastic Cloud Compute (EC2) is a web service
which offers computing power to users [6]. Auto scaling in
EC2 has the following components [7]: groups (a collection
of EC2 instances), launch configurations (used when creating
new instances) and scaling plans (they choose how to scale a
group).

There are several scaling plans: maintain current number of
instances running, manual scaling, scale based on a schedule
and scale on demand. Maintain current number of instances
running is accomplished by doing regularly health checks. If
necessary, the unhealthy instance is terminated and a new one
is launched instead. This is the default plan. Scale based on a
schedule is done by performing time-based scaling operation
Scale based on demand aka policy-based scaling. A policy is a
set of rules executed by Auto Scaling in response to an alarm.
An alarm is an object that monitors a metric for a specified
amount of time. An Auto scaling Group can have multiple
scaling policies.

Google App Engine [8] is formed by multiple services.
Each service has two components: source code and configu-
ration file. The scaling type is specified in the configuration



file and has three choices: manual scaling, basic scaling and
automatic scaling. In basic scaling a instance is created when
a request is received and is destroyed when the application is
idle. In automatic scaling a instance is created/turned off on
demand based on different application metrics.

Microsoft Azure[9] supports Azure Autoscale: dynamically
add or remove instances based on schedule and/or on runtime
metrics. In addition, Azure Resource Manager Rest API and/or
Azure Service Management Rest API can be used for au-
toscaling. Azure can also use third-party services like Paraleap
AzureWatch.

B. Service scaling

Periscope [10] brings QoS and autoscaling to Yarn ap-
plications. It monitors the application progress, the YARN
containers and their resources and available cluster nodes to
make decisions. Periscope is also capable of:

• Application re-prioritization

• Enforcing SLAs

• Enforcing guaranteed cluster capacity

The company behind Periscope has been acquired by
HortonWorks[11] and the product has been integrated into
CloudBreak [12]. However it’s not clear whether the project
has been continued and we could not find information regard-
ing experimental results.

Qubole [13] analyzes Job Tracker information to predict
future load of the cluster and make scaling decisions. It uses
StarCluster [14], an open source cluster management software.
Basically Qubole works in the following way:

• Nodes in the cluster send launch time to the JT

• JT monitors pending work and computes the remain-
ing workload. If the remaining workload is higher than
a preset threshold, JT will add more nodes.

• In the same way, JT will decommission nodes if the
remaining workload does not justify keeping it.

• Nodes in the cluster send launch time to the JT

Qubole was designed to address scaling in a specific
platform. Also no experimental results have been published
so far.

III. SYSTEM OVERVIEW

The system we propose can be functionally described in
figure 1.

Fig. 1: Functional diagram

The application regularly polls the cluster for OS and
service level metrics. Then it generates comissioning/decomis-
sioning decisions which are sent to the cluster manager.
This translates into storage/processing services being added or
dismissed dinamically. In this paper specifically, the software
scales YARN Node managers and Data nodes.

In our implementation the cluster manager role is perfomed
by Apache Ambari. Ambari is an open source framework
for provisioning, managing, and monitoring Apache Hadoop
clusters [15], [16]. It provides a REST API and a web interface
for monitoring and management. The REST API exposes calls
to comission/decomission Hadoop services.

A. Architecture

A more detailed view of the workflow shows six main
components: the Metrics Monitor, Hadoop Sinks, Metrics
Collector, Ambari Server, Ambari Rest API, BigScale and
Hadoop Cluster. The picture below shows the relationship
between them.

Fig. 2: Main workflow

The steps performed by the applications are the following:

• 1 - Metric monitors send system-level metrics to
Metric Collector

• 2 - Hadoop Sinks send Hadoop-level metrics to Metric
Collector

• 3 - Metric Collector stores and aggregates metrics

• 4, 5 - Metrics are retrieved by BigScale through a
REST API exposed by Ambari

• 6 - Based on retrieved metrics and historical data
determine what service components must be scaled

• 7 - Send requests to Ambari server to scale services

• 8 - Ambari performs the corresponding action on the
Hadoop Cluster

The resource provisioning application dynamically scales
slave components (Data nodes and Name nodes) to ensure
the required infrastructure for a YARN application and to



conform with system administrator requirements. In order
to offer different options to users, there are three automatic
scaling strategies.

1) Use fewer resources - This is done by having equal
number of running Node Managers and Data Nodes

2) Balanced with minimum resources - The goal is
to recommission/decommission Node Managers to
maintain a certain level of resource utilization. The
condition for recommissioning a Node Manager is
that the memory utilization is above threshold t1
or CPU utilization is above threshold t2; and for
decommissioning a Nodemanager is that the memory
utilization is below threshold t3 and CPU utilization
is below threshold t4. The CPU and Memory thresh-
old (t1, t2, t3, t4) may differ.

3) Highest performance - Allocate all processing power,
Node Managers must be running - to achieve less
running time for an application.

In strategy 1 the number of data nodes is equal to the
number of node managers and new node managers are added
if the containers exceed their allocated processing power. In
strategy 2 scaling is done by setting thresholds for node
managers. A new node manager is recommissioned if they
exceed a certain threshold for a longer period of time. They
are decommissioned if the resource utilization is below the
specified threshold. In strategy 3 the running time of the
applications is reduced by using all the available resources.

Data nodes behave the same regardless of the strategy: they
scale up and down if the space and threshold requirements are
not satisfied. Also, if there are no applications running, the
recommission operation for data node/namenode is prohibited.
For the decommissioning command, there is a different free
space available condition for Data Nodes.

The number of Node Managers scales down to be equal to
the number of Data Nodes. This operation is necessary for the
system to be more cost-effective.

The application collects metrics offered by Ambari Metrics
from the master services (YARNs Resource Manager and
HDFSs Name node) and depending on the scaling strategy it
sends commands to the Ambari Server. Commands are targeted
for slave components of the master components mentioned
above (master Resource Manager to slave Node Manager and
master Name node to slave Data Node).

Decommissioning and recommissioning data nodes is done
by sending a request through Ambari REST API to the Name
node to include/exclude the data nodes hosts. Decommis-
sioning and recommissioning Node Manager is done also by
sending a request through Ambari REST API to Resource
Manager to include/exclude node managers hosts. In addition,
Resource Manager stops the decommissioned host. So when a
Node Manager is recommissioned it is restored to its previous
state.

The diagram below 3 shows how the automatic scheduling
application works. For the scaling operations to function
properly, a configuration file must be read in order to know
the Ambari server address, cluster name, scaling strategy and
other parameters. Once the configuration file is read, we enter a

loop in which we make Node Manager and Data Node scaling
operations.

Fig. 3: Application flow

The wait time is used to collect enough relevant metrics.
We collect 1 metric per second and if there are enough metrics
and the scaling conditions are satisfied, the scaling operations
are executed.

B. Decision making

We describe in detail how the main function of the appli-
cation takes decision. The following abbreviations are used:
NM (Node Manager), DN(Data Node).

In the Node Manager Operations module the scaling oper-
ations are based on metrics taken from the YARN Resource
Manager. If there is no application running, the number of
Node Managers in-service and started must be equal to the
number of Data Nodes in-service and started. By doing this
we keep resource utilization to a minimum. If there are
applications running, then we take into consideration metrics
and scaling strategies 4.

Fig. 4: Node Manager Operations

In the case of Data Node autoscaling, there is a single
scaling strategy because storage scaling is needed to keep
up with increasing amounts of data. According to the figure
above, if there is no YARN application there is a restriction
for recommissioning a Data Node even if the conditions are
satisfied. In this case a Data Node can be decommissioned if
the space is higher than fs1.

If there are applications running, the next conditions are
applied. If the used percentage is below threshold t1 and the
free space is less than fs3 then a Data Node is recommissioned.



This condition is required if the free space is very low and
the threshold conditions are not met, because if this condition
does not exist, the time remaining to fill all the HDFS space
may be lower than the time to recommission a Data Node and
the Name node to take notice of that change. If used space
percentage is higher than threshold t1 and free space is lower
than fs4, a Data Node is recommissioned. If there is much
free space and used space percentage is above threshold t1,
recommissioning is a mistake, because we have more than
enough space for the current workload to run for a longer
period of time. Note that fs4 is much higher than fs1. If the free
space is higher than fs2 then a Data Node is decommissioned.
It is recommended that fs2 should be higher than fs1.

The figure below 5 shows how Data node Operations are
decided. The values fs1, fs2, fs3,fs4 and t1 are taken from the
configuration file.

Fig. 5: Data Node Operations

In conclusion, in order for these conditions to work as
intended for Data node scaling operations, the following re-
lationships between free spaces specified in the configuration
file must be true: fs2 should be higher than fs1, fs3, fs4 and
fs3 must be less than fs4.

The tool leaves room for administrator intervention. The
manual allocation operation flow is: it reads from the config-
uration file the Ambari server address, cluster name, etc. and
afterwards it enters a loop. In that loop, it waits for the user
input command. When a command is entered, it executes that
command and returns the possible output.

The main parameters that need to be defined in the master
configuration file are:

• Ambari server authentication

• Ambari server address and cluster name

• Used space percentage and free space threshold for
DN scaling operations

• CPU and Memory utilization threshold for NM scaling
operations

• Overhead time between two successive scaling oper-
ations

• Number of measurements taken

• Scaling strategy

A scaling option can be done if:

• the constraints stated in the scaling strategies are
accomplished

• the measurements are equal to the specified number
of measurements

• enough time has passed since the previous scaling
operation

The time is measured after the scaling operation has fin-
ished. After each scaling operation the measurements are reset
in order to avoid previous values influencing future scaling
decisions. The time between two measurements is one second
and measurements are stored in a local list.

One advantage of gathering more measurements is that the
spikes in the measurements gathered have little effect on the
scaling decision. In addition, the overhead time between two
successive scaling operations is needed to make sure the master
components notice the system change and can update their info
accordingly. To make sure the scaling operation is finished
(decommission/recommission), it is necessary to do polling,
because the Ambari REST API sends back as a response an
HTTP link with the progress of the operation. In other words,
Ambari Server sends through REST API an asynchronous
response.

In order to know the status (STARTED/ DECOMMIS-
SIONED) of the slave components and to not overwhelm
the Ambari server with requests, at the beginning of the
program a request is sent to Ambari to store the status of
slave components in a local list; after each scaling operation
we update the local list.

If there are no running YARN application then the wait
time between two successive Node Manager components is 0,
because it doesnt depend on any metrics given by the Resource
Manager.

To ensure that the final result of executing multiple tasks
for a certain slave component is correct, all tasks run in
sequential order for a slave type. In other words, Data node
tasks and Node Manager tasks can run in parallel, but each
task belonging to a certain slave type is executed sequentially.

IV. IMPLEMENTATION DETAILS

A. Workload types

In this subsection we analyze the projected results when
different types of YARN applications run in an Apache Ambari
environment. Regardless of the workload, an increase in in the
number of Node Manager components will result in a decrease
in the running time of the YARN application.



1) CPU and I/O: The Wordcount program, like the Pi
calculation program, is interesting because is has a CPU and
a I/O component. In this case, it is expected a reduction in
time by recommissioning Node Managers but the monitoring
is trickier in some situations because CPU usage level is
dependent of I/O part.

2) I/O intensive: For an I/O intensive program, like Ter-
agen or TESTDFSIO, adding Node Managers will reduce
time and lower the resource utilization levels. The workload’s
objective is to write large quantities of data so adding Data
Nodes will suffice. In most cases, adding a Data Node is
followed by adding a new Node Manager and therefore the
resource utilization will probably be lower. Because of the
Hadoop write-once policy we expect applications like Teragen
not to produce spikes in CPU and Memory utilization levels.

B. Experimental setup

Our experimental setup is based on OpenStack [17], an
open-source cloud solution used for management and deploy-
ing IaaS infrastructure. It can scale up to 1 million physical
machines, up to 60 million virtual machines and billions of
stored objects. The cluster we used for prototyping has the
following configuration:

VCPUs RAM (MB) Disk (GB) State
4 4096 24 Active
1 1536 16 Active
1 1536 16 Active
1 1536 16 Active
2 4096 10 Active
4 4096 24 Active
1 1536 16 Active
1 1536 16 Active

Although we achieve promising results with 8 machines,
part of future work is to extend the experiments to larger
clusters like GRID 5000 [26].

The metrics are collected as follows:

• Node Managers - CPU and Memory Utilization

• Data Nodes - Used space percentage and free space

On top of the cluster we installed an Apache Ambari
Server[15] with the following services: HDFS[18], YARN[19],
MapReduce[20], Ambari Metrics[21] and Zookeeper
Server[22]. Zookeeper is used for coordinating distributed
applications.

V. EXPERIMENTAL RESULTS

A. Test applications

The experiments used in this chapter express different
workloads. The dynamic scheduling applications responsibility
is to handle these workload properly. The following test
applications are used: Teragen, Wordcount and Pi.

1) Teragen: Teragen application is an I/O write applica-
tion that generates specified quantities of data.([34]) thus the
nodemanager and data node scaling operations are tested by
generating large quantities of data.

2) WordCount: The wordcount application sums up the
number of appearances of each word in the input text([35]). In
this experiment, we want to see how a workload of a program
that utilises both CPU and I/O is handled.

3) Pi: The pi benchmark approximates the value of pi us-
ing quasi-Monte Carlo method.([36]). The experiment utilizes
this program only for demonstrating the decrease of application
running time when Node Managers are recommissioned.

B. Assumptions and results

In this subsection the truthfulness of the assumptions made
and how the application behaves in different benchmarks are
tested.

1) More computational resources decrease running time:
if we add more Node Manager components the application
running time will decrease.

For this test we used the PI benchmark, because in other
benchmarks the I/O part may interfere and, as a consequence,
the results may be inconsistent. We obtained the following
results:

Nr Node Managers Runtime(seconds)
2 204.341
4 108.144
8 66.881

The figures below 6 show a graphic representation of
resource utilization when an application is run three times,
each time with a different number of node managers. First
time it is executed with 2 NM, second time with 4 and third
time with 8.

Fig. 6: Pi CPU and memory usage

2) Scale in when no application is running: if there are no
applications running, the slave components will scale in or out
so the number of node manager components match the number
of data node components and data node components will scale
in if the free space condition specified in the configuration file
is fulfilled

In the current setup, free space threshold is set to 20
GB, 8 active Node Manager components, 5 active Data Node
components and the dfs replication is set to 2. There is a
difference as shown in the figure below, between the time a
Data Node was decommissioned and the time the remaining



free space decreased. This happens because the name node
needs some time to keep up with the system changes.

The node manager components will scale in order to match
the number of data nodes 7.

Fig. 7: Components scale in

Even though the free space condition is fulfilled, we
cannot decommission a Data Node, because the number of
decommissioning data nodes is equal to dfs replication plus 1.
This condition is necessary for having a backup of the data in
other active Data Node components.

3) Scaling while application are running: Teragen Mapre-
duce application is designed to write a large file for the terasort
benchmark.

Scaling Strategy 1. The following setup is employed: 2
Data Nodes, 2 Node Manager, free space 9.9 GB, free space
threshold 10 GB if used space is above 80% and 5 GB if less,
node manager and data node add cooldown 30 s

In 8 it can be observed that a node manager is recommis-
sioned after a data node is recommissioned.

It also shows that when a data node is recommissioned,
the free space increases. A data node is recommissioned, in
this scenario, if the free space reaches under 15 GB free and
used space is above 80%. The second condition, free space
under 5 GB and used percent under 80% is never fulfilled.
The free space continues to go down even if the data nodes
are recommissioned because it takes some time for Name node
to take notice of the system change. This will happen in all
strategy plans if the data node scaling conditions are satisfied.

Fig. 8: Node manager recommissioned after data node

Figure 9 shows that the increase of Node Managers will
decrease for this program the CPU and memory usage.

Fig. 9: Scaling out

Scaling Strategy 2. The following setup is employed: 2
Data Nodes, 2 Node Managers, free space 9.9 GB, free space
threshold 11 GB if used space percent is above 80% and 5
GB if less, node manager and data node add cooldown 30 s,
recommission node manager CPU threshold 50% and memory
60%.



Figure 10 shows that the Node Managers scale before Data
Nodes in the first 2 cases, because their scaling condition is
fulfilled before they are forced to scale to match the number
of active data node.

Fig. 10: Active Nodes

Figure 11 shows how the CPU and memory usage lowers
as we recommission Node Managers.

Fig. 11: Scaling out node managers

Scaling Strategy 3. The following setup is employed: 2
Data Nodes, 2 Node Managers, free space 9.9 GB, free space
threshold 11 GB if used space is above 80% and 5 GB if less,
maximum Node Managers 8.

In this strategy plan, the node managers will increase at
the maximum capacity, independent of the CPU and memory
metrics. In 12 the number of active Node Managers is 7, not
8, because the program finished running before the final node
manager is recommissioned.

Fig. 12: Active Nodes

Figure 13 shows the effect of successive recommissioning
node managers: the time decreases and the CPU and memory
usage lowers.

Fig. 13: CPU and memory usage

For a better view, in 14 and 15 all strategies are compared.
To easier observe the difference, the time line was changed so
that all applications executions start at the same time.

Fig. 14: CPU usage for all three strategies



Fig. 15: Memory usage comparison

As we can observe in all the Teragen figures, there are no
spikes and the line is smooth. An explanation for this event is
that the policy of the Hadoop one-writer-many-readers limits
the number of writers that are concurring for the writing access
to just one. The time is reduced, depending on how many Node
Managers are added and how soon they are added.

The strategy that utilizes the least amount of resources
is scaling strategy 2. However, it can recommission more
Node Managers than necessary. For this reason it is not
recommended for this type of program.

4) Wordcount: Setup: 2 Data Nodes, 2 Node Managers,
free space 9.9 GB, free space threshold 11 GB if used space
percent is above 80% and 5 GB if less, 8 maximum Node
Managers

In the current setup, data node scaling operations are not
needed, because the scaling conditions are not satisfied (the
free space available does not lower down enough). As a
consequence, applying scaling strategy 1 has no effect on the
system.

There is little difference between scaling strategy 2 and 3,
as it can be seen in 16 and 17.

Fig. 16: CPU and Memory usage in scaling strategy 1

Fig. 17: CPU and Memory utilization in scaling strategy 2

The difference is given by the time needed to gather the
measurements, satisfying Node Manager thresholds and the
overhead between two successive scaling operations in scaling
strategy 2.

VI. LESSONS AND LIMITATIONS

A data node is not recommended to be decommissioned if
there are dfs.replication − 1 nodes in the decommissioning
state, because there is a possibility that a certain file would not
exist on any available nodes if the decommissioning operation
is done

If there is no application running there must be an add
prohibition for slave components. This option would not be so
relevant if the application has a prediction component. In the
current state, there is no way to know when a new application
will start so the best action is to keep resource utilization to a
minimum.

The reaction time of master components to system changes
must be taken into consideration when the metrics are ob-
tained, because some metrics may be compromised during this
time interval and should not be taken into consideration.

There must be a time interval between two scaling opera-
tions applied on the same component type so not to overwhelm
the system with requests and to leave time for Resource
Manager to allocate those new resources, master components
to notice the system changes and to collect enough metrics for
calculated decision.

After a scaling operation the previously obtained metrics
must be reset so not to influence future metrics. The metrics
used to measure computation resources utilization have a
certain error, because there is a level of abstraction in place
and there is no way to access what happens inside a container.
The metrics we used are formed by making a ratio between
the number of resources allocated and the number of resources
available.

The number of machines that can be added by a privileged
user is limited by the OpenStack infrastructure.

The decommissioning data nodes operation can last an
extremely long time, because all the files that are stored in
the decommissioned data node host must be moved to other
data nodes to maintain the replication factor.



If a slave component is deleted, then the master component
must be restarted. This is happening because Resource Man-
ager and Name node does not run in high availability mode.
A consequence is that there is an overhead time caused by
restarting the master and the slave components, in order to
determine them to resume their previous state. Luckily, if a
component is added, there is no such restriction.

Restarting the master component can take a very long time.
For example, if the Name node is restarted, it must index all
the files stored in the HDFS and this operation will be time-
consuming.

In Hadoop only one writer is allowed at a certain mo-
ment, but there can be many readers [23] This will limit the
throughput for write operations, but will increase it for read
operations.

Ambari Metrics Collector runs in embedded mode (default
option), because the cluster has a small size (eight nodes).
By running in distributed mode, metrics are stored in HDFS
and therefore there is an additional network overhead that will
limit the applications throughput. Additionally, the Name node
restart will take longer because it has to index all the files in
the HDFS. The metrics are obtained through Hadoop services
master components: YARNs Resource Manager and HDFSs
Name node. The same information can be obtained through the
slave services: Data Node and Node Managers. The upside is
that there is no overhead time to take notice of system changes
(e.g. decommissioning a data node, recommissioning a Node
Manager), but the downside is that the time for getting the
metrics through increases with the growth of the slaves.

The time for getting a metric through Ambari REST is
fairly long. In order to reduce the time of a regular Ambari
REST get command, a partial request is used to select and
retrieve only the metrics from the master components that are
important to decide what scaling operations should be done.

The default deletion time of a file in Hadoop is 360
seconds. We changed the value to 0 to reduce the time between
tests.

The small files are a huge problem for Hadoop, because
it spends a lot of time managing their metadata information
and as pointed [23] the memory usage is also high (63.53%).
That happens because the metadata information is stored in
the Name node memory [24]. Another issue for small files
is that Name node restricts the number of files stored in the
HDFS and according to [24], accessing a large number of
these files results in a bottleneck in Name node. Furthermore,
high latency is expected when reading small files [25] and the
throughput falls below expectations.

VII. CONCLUSIONS AND FUTURE WORK

In this article we have argued for the importance of scal-
ability in distributed systems, specifically vertical scalability
and its implications. We have outlined the benefits of this
approach and proposed a solution capable of automatic scaling
in and out of a Hadoop cluster. We have described 3 scaling
strategies and ran experiments on multiple types of workloads.
The experiments demonstrate that such an approach is feasible
and can integrate easily with other cluster components.

Although we achieved promising results, we intend to
extend our experiments to larger clusters such as GRID5000
[26]. The experiments will also involve multiple concurrent
applications competing for the same resources. This will imply
the development of a scheduling algorithm and the encryption
of the transmitted data. The scheduling algorithm will need to
employ a check-pointing mechanism in order to resume the
applications once they are able to run.

Future work will also involve scaling services such as
processing, messaging and storage. The application will also
be transformed to allow for more abstract scaling expressions.
In this sense the administrator will input QoS/SLA parameters
(e.g data processing throughput or response time) and BigScale
will adjust the cluster to those purposes. The underlying infras-
tructure will also receive horizontal scaling recommendations.

Currently, the application performs regular polling opera-
tions of the cluster metrics. As part of a modular solution, we
will employ an event-based architecture to reduce the resulting
overhead. Commissioning and decommissioning will be done
in a parallel fashion, in order to speed up the short-term
capability of the scaling process.

Machine learning techniques will be employed to profile
the workloads and make predictions on the resource needs of
the cluster. In this sense we intend to use fewer thresholds
and input parameters so that the administrator will delegate
the scaling responsibility entirely to the application.

REFERENCES

[1] Garcia, Daniel F., G. Rodrigo, Joaqun Entrialgo, Javier Garcia, and
Manuel Garcia. ”Experimental evaluation of horizontal and vertical
scalability of cluster-based application servers for transactional work-
loads.” In 8th International Conference on Applied Informatics and
Communications (AIC’08), pp. 29-34. 2008.

[2] Agrawal, Divyakant, Amr El Abbadi, Sudipto Das, and Aaron J. Elmore.
”Database scalability, elasticity, and autonomy in the cloud.” In Interna-
tional Conference on Database Systems for Advanced Applications, pp.
2-15. Springer Berlin Heidelberg, 2011.

[3] Mei, Lijun, Wing Kwong Chan, and T. H. Tse. ”A tale of clouds:
paradigm comparisons and some thoughts on research issues.” In Asia-
Pacific Services Computing Conference, 2008. APSCC’08. IEEE, pp.
464-469. Ieee, 2008.

[4] Anandhi, R., and K. Chitra. ”A challenge in improving the consistency
of transactions in cloud databases-scalability.” International Journal of
Computer Applications 52, no. 2 (2012).

[5] Hill, Mark D. ”What is scalability?.” ACM SIGARCH Computer Archi-
tecture News 18, no. 4 (1990): 18-21.

[6] Amazon EC2, [https://aws.amazon.com/documentation/ec2/
[7] Vaquero, Luis M., Luis Rodero-Merino, and Rajkumar Buyya. ”Dynam-

ically scaling applications in the cloud.” ACM SIGCOMM Computer
Communication Review 41, no. 1 (2011): 45-52.

[8] Google App Engine https://cloud.google.com/appengine/docs/python/
an-overview-of-app-engine

[9] Microsoft Azure, https://azure.microsoft.com/en-us/documentation/
articles/best-practices-auto-scaling/

[10] Benedict, Shajulin, Ventsislav Petkov, and Michael Gerndt. ”Periscope:
An online-based distributed performance analysis tool.” In Tools for High
Performance Computing 2009, pp. 1-16. Springer Berlin Heidelberg,
2010.

[11] HortonWorks http://hortonworks.com/
[12] Whelan, Christopher W., Jeffrey Tyner, Alberto L’Abbate, Clelia Tiziana

Storlazzi, Lucia Carbone, and Kemal Snmez. ”Cloudbreak: accurate
and scalable genomic structural variation detection in the cloud with
MapReduce.” arXiv preprint arXiv:1307.2331 (2013).

[https://aws.amazon.com/documentation/ec2/
https://cloud.google.com/appengine/docs/python/an-overview-of-app-engine
https://cloud.google.com/appengine/docs/python/an-overview-of-app-engine
https://azure.microsoft.com/en-us/documentation/articles/best-practices-auto-scaling/
https://azure.microsoft.com/en-us/documentation/articles/best-practices-auto-scaling/
http://hortonworks.com/


[13] Qubole, https://www.qubole.com/blog/product/
industrys-first-auto-scaling-hadoop-clusters/

[14] StarCluster http://star.mit.edu/cluster/
[15] Ambari https://cwiki.apache.org/confluence/display/AMBARI/Ambari
[16] Dagli, Mikin K., and Brijesh B. Mehta. ”Big Data and Hadoop: A

Review.” International Journal of Applied Research in Engineering and
Science 2, no. 2 (2014): 192.

[17] Sefraoui, Omar, Mohammed Aissaoui, and Mohsine Eleuldj. ”Open-
Stack: toward an open-source solution for cloud computing.”

[18] Borthakur, Dhruba. ”HDFS architecture guide.” HADOOP APACHE
PROJECT http://hadoop. apache. org/common/docs/current/hdfs design.
pdf (2008): 39.

[19] Vavilapalli, Vinod Kumar, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves et al. ”Apache
hadoop yarn: Yet another resource negotiator.” In Proceedings of the 4th
annual Symposium on Cloud Computing, p. 5. ACM, 2013.

[20] Dean, Jeffrey, and Sanjay Ghemawat. ”MapReduce: simplified data
processing on large clusters.” Communications of the ACM 51, no. 1
(2008): 107-113.

[21] Wadkar, Sameer, and Madhu Siddalingaiah. ”Apache ambari.” In Pro
Apache Hadoop, pp. 399-401. Apress, 2014.

[22] Hunt, Patrick, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. ”ZooKeeper: Wait-free Coordination for Internet-scale Systems.”
In USENIX Annual Technical Conference, vol. 8, p. 9. 2010.

[23] Liu, Xuhui, Jizhong Han, Yunqin Zhong, Chengde Han, and Xubin He.
”Implementing WebGIS on Hadoop: A case study of improving small
file I/O performance on HDFS.” In 2009 IEEE International Conference
on Cluster Computing and Workshops, pp. 1-8. IEEE, 2009.

[24] Chandrasekar, S., R. Dakshinamurthy, P. G. Seshakumar, B. Prabavathy,
and Chitra Babu. ”A novel indexing scheme for efficient handling of
small files in hadoop distributed file system.” In Computer Communi-
cation and Informatics (ICCCI), 2013 International Conference on, pp.
1-8. IEEE, 2013.

[25] Dong, Bo, Qinghua Zheng, Feng Tian, Kuo-Ming Chao, Rui Ma, and
Rachid Anane. ”An optimized approach for storing and accessing small
files on cloud storage.” Journal of Network and Computer Applications
35, no. 6 (2012): 1847-1862.

[26] Bolze, Raphal, Franck Cappello, Eddy Caron, Michel Dayd, Frdric
Desprez, Emmanuel Jeannot, Yvon Jgou et al. ”Grid’5000: a large
scale and highly reconfigurable experimental grid testbed.” International
Journal of High Performance Computing Applications 20, no. 4 (2006):
481-494.

https://www.qubole.com/blog/product/industrys-first-auto-scaling-hadoop-clusters/
https://www.qubole.com/blog/product/industrys-first-auto-scaling-hadoop-clusters/
http://star.mit.edu/cluster/
https://cwiki.apache.org/confluence/display/AMBARI/Ambari

	Introduction
	Related work
	Node scaling
	Service scaling

	System overview
	Architecture
	Decision making

	Implementation details
	Workload types
	CPU and I/O
	I/O intensive

	Experimental setup

	Experimental results
	Test applications
	Teragen
	WordCount
	Pi

	Assumptions and results
	More computational resources decrease running time
	Scale in when no application is running
	Scaling while application are running
	Wordcount


	Lessons and Limitations
	Conclusions and future work
	References

