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Abstract

As the usability of Cloud-based solutions has increased for various types of users with differ-
ent needs, from scientists that want to process big data sets collected from sensors or business an-
alysts that want to take decisions based on the huge amount of gathered data to simple users that
store or share documents via a Cloud platform, the generated data is increasing more and more.
For example, the ATLAS and other detectors at CERN generate petabytes of data and Facebook
stores data with a rate of around 600 TB daily. In the current context, efficient scheduling for Big
Data applications is a challenge and an appropriate scheduling technique is required for different
types of incoming requests. In this paper we propose a scheduling algorithm for different types
of computation requests: independent tasks, like bag of tasks (BoT) model or tasks with depen-
dencies modeled as directed acyclic graphs (DAG), and they will be scheduled for execution in
a Cloud datacenter. The tasks in the requests are scheduled on the available resources using the
suitable scheduling algorithm for each request. We rely on a machine learning toolbox, named
as MLBox, to find what algorithm should be used for a certain request. We implemented four
heuristics for scheduling BoTs and four heuristics for DAGs scheduling and generated the train-
ing data for the machine learning algorithm by running multiple traditional scheduling algorithms
and selecting the *best’” one for a given request. We evaluate the performance by comparing the
scheduling of different tasks requests using some of the traditional algorithms and our machine
learning based scheduling algorithm.

Keywords: Asymptotic Scheduling, BoT Scheduling, DAG Scheduling, Scheduling Heuristics,
Machine Learning, Datacenters

1. Introduction

The scheduling problem refers to assigning tasks on resources in an almost optimal manner.
This is one of the key topics in the current context of distributed systems as the schedulers,
part of Cloud platforms (like Apollo [4], Bistro [14], Paragon [10], DejaVu [38], etc.), have to
face new challenges caused specially by Big Data applications like processing huge amounts
of heterogeneous data, generated in a short period of time, via data flows or on-line streaming,
which has to be managed very fast (read, write, filter, compute statistics).

Cloud solutions enable users the access via Internet to various types of resources such as
existing applications in the Cloud, frameworks that can be used for development of custom built
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applications (Hadoop, Spark, Flink, RabbitMQ, etc.), access to Virtual Machines (VMs) for
installing operating systems and also storage and sharing solutions. Therefore, the Cloud is
now a significant choice for multiple types of users, be them common individuals, scientists or
technical users. The Big Data applications handle huge amount of data, and scheduling such
applications is a real challenge [12, 27]. For example, Hadoop queries for data retrieval in map-
reduce applications may generate a significant number of tasks because they are generally used
on very large data sets.

In the homogeneous distributed systems the resources have similar properties and tasks exe-
cution on different processing units will take the same time. The heterogeneous systems consist
of resources with different characteristics so the execution time of one task on different machines
will vary. Usually Cloud datacenters are homogeneous because the resources administration
is easier if they are identical and the security issues are mainly related to the overall system
architecture [45] so the traditional Cloud systems contain identical commodity machines. Nev-
ertheless, heterogeneous Cloud systems have been developed [7, 36], because this model allows
to shift from one architecture to another as needed providing the following advantages: it is
possible process more data faster (change the architecture and approach for different types of re-
quests), and provide access to different types of groups (smaller research groups will also afford
the access to Cloud systems) [28, 26, 34].

The motivation for approaching the scheduling problem in this paper is the increasing need of
efficient processing of very large data sets [18, 42]. Examples of applications that generate such
large data sets include the Montage general engine [2] that computes the mosaic of input images.
The input images are generated by astronomical projects such as IPHAS [11] (INT Photometric
Ha Survey of the Northern Galactic Plane) that displays the northern part of the Milky Way
in visible light, which database contains more than 2 million images with a size of around 2
TB. In [5] it is described the detailed costs of producing mosaic of the input images, which
raises to thousands of $. In this case, even small optimizations will impact the overall costs.
Other applications could generate data of petabytes scale, like the ATLAS and other detectors at
CERN [5, 9].

The area of genotype research generates very large data sets. For example, TCGA (The
Cancer Genome Atlas) stores the normal and affected tissue for hundreds of for over 20 different
cancer types. In this case, the genomic data size is of about 500 TB and is expected to grow to PB
scale in the next 3 years. Therefore we have a growing need for environments that can manage
the analysis of these large amounts of data sets, and one solution is be to have cloud-based access
to them. Such a Cloud solution, part of the Open Science Data Cloud, is Bionimbus Protected
Data Cloud (BPDC) [19].

Between the generators of Big Data sets we can also find a large number of non-scientific and
non-technical applications such as: Facebook, LinkedIn or Instagram. For these applications, a
huge number of users execute different types of actions concurrently. For the Facebook example,
users may upload photos, share pages or post comments. All these actions generate very large
amounts of data, up to hundreds of PB, with daily incoming rates of TB stored as Hive data, and
using Map Reduce for queries [37].

In this paper we propose a scheduling algorithm that addresses the following model: the
requests may contain independent tasks or tasks with dependencies (or worflows) and they will
be scheduled for execution in a datacenter. The developed scheduling algorithm uses a machine
learning box (MLBox) tool that receives as input a request (containing a large number of tasks),
the output is which scheduling algorithm should be used for this request (labeling techniques).
Then, the tasks in the request is scheduled using the selected algorithm. The training data for
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the learning algorithm consists in a very large set of labeled requests (billions), each containing

thousands tasks. We built the training data as follows: for each request in the training set we run

multiple traditional scheduling algorithms (for independent tasks or tasks with dependencies),

select the "best’ algorithm (which optimizes a chosen cost function) and label the request with the

selected algorithm. We validate the proposed algorithm by comparing the scheduling of different

requests using some of the traditional algorithms and our machine learning based algorithm.
Our contributions in this paper are summarized as follows:

e We performed a critical analysis of existing traditional scheduling algorithms both for
independent tasks and for workflows, for which types of tasks they are better suited. Based
on this analysis we chose the algorithms for scheduling BoTs and DAGs that we will
integrate in our new proposed scheduling algorithm.

e We implemented a machine learning algorithm used for labeling requests: select the best
scheduling algorithm that will be used for schedule the tasks on the given resources. We
also generated the training data for the machine learning box. We implemented the previ-
ous enumerated traditional algorithms, and chose one for each request.

e We proposed a novel hybrid approach for tasks scheduling in homogeneous Cloud sys-
tems based on labeling requests (sets of tasks) using the MLBox tool. This approach was
used because we admit that there is no solutions that could fit all types of tasks mod-
els. Therefore, our algorithm is based on using different scheduling strategies, selected by
considering the heterogeneity application tasks and/or flows.

o We extended CloudSim simulator [6] to integrate scheduling strategies for BoTs and DAGs,
and also our machine learning based algorithm encapsulated in the MLBox tool.

The rest of the paper is structures as follows. In Section 2 we analyze the background and
current state of the art: a short overview of the current applications that generates many tasks
(with and extended 8-V model for Big Data) and a critical analysis of current scheduling al-
gorithms for different types of requests, presenting advantages and possible improvements. A
detailed description of our solution is provided in Section 3: traditional scheduling algorithms
that are used, the proposed machine learning based scheduling algorithm, and the MLBox tools
that we developed. In Section 4, we present the implementation details, which include the inte-
gration with the CloudSim simulator. The experimental methodology, results and discussion of
the results are covered in Section 5. Finally, in Section 6 we present the conclusions and also
possible directions for future research.

2. Background and Related Work

Asymptotic task scheduling represents either the scheduling of continuous large workloads
or workflows, as soon as they arrive at the system or the analysis of tasks scheduling for an infi-
nite” time horizon. Asymptotic scheduling analysis is related to Many Tasks Computing (MTC).
The notion of MTC has been introduced by Ioan Raicu [30]. It is defined as a combination of
High Performance Computing (HPC) and High Throughput Computing (HTC) and it refers to a
very large number of various sets of tasks: independent workloads/workflows, small/large tasks,
computational/data intensive (I/O rates, FLOPS, no tasks, dependencies). The sets of tasks arrive
with great speed. The MTC notion includes multiple problem types, classified using the number
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of tasks and the data sets size: Big Data (very large data sets and very high number of tasks),
Map Reduce (very large data sets and relatively reduced number of tasks) and HTC (smaller data
sets and very high number of tasks). So, Big Data may be considered as part of MTC, using this
classification.

Asymptotic scale requests are encountered in Big Data platforms and they involve queries/data
analytics on Big Data sets. The challenges are that these datasets cannot not be managed, pro-
cessed or stored by traditional hardware/software solutions within a tolerable time due to the very
large dimensions of the set, they are produced at a high speed and cannot be entirely stored. Big
Data is often described using a multiple V’s model [1]; the extended model of these V features
is as follow (the 8-V model):

e Volume - Big Data usually refers TB up to PB scale data sets, that have to be acquired,
stored and analyzed at different time intervals (daily, weekly) depending on the source.

e Velocity - the data may need to be acquired and processed/stored at different speeds. Some
chunks may arrive as batch at certain time intervals, in a near-time manner (at small time
intervals), real-time (continuous data) or as streams of data.

e Variety - Big Data sets structure can be defined by different data types: structured (well-
defined data model), unstructured (data model is not defined), semi-structured (not strict
data model) or mixed (various types).

o Variability - some Big Data sets face with constantly and repetitive changing the can have
an important impact on data homogenization.

e Veracity - the data being stored should be ’cleaned’, any noise or abnormality in the data
should be removed such that the analysis performed on the data can be relied on.

e Value - Big Data can be used for multiple goals: reporting of business processes or trans-
actions, churn analysis (why does user engagement drop), diagnosing system failures and
also make different decisions.

o Volatility - this characteristic refers to how long should the data be stored, and is influenced
by how long the data is valid and can be relevant for the current use.

o Visualization - refers to intelligent methods that transform spreadsheets and reports into
dynamic charts and graphs used to visualize large amounts of complex data sets.

When Big Data applications are seen as read/withe operations to memories or storage de-
vices, they create heavy workloads (BoTs or DAGs), being the best killer applications for asymp-
totic scheduling.

The scheduling problem is one of the key topics in the context of distributed systems, and it
could be described as follows: consider a set of tasks, each task is composed by a number of op-
erations, and a set of resources, a resource may be a physical/virtual machine or a processor, then
we may define scheduling as the allocation of each task on a resource. A scheduling algorithm
tries to optimize different measures, such as total execution time (minimize), CPU load (max-
imize) or optimize more complex cost functions. The continuous improvement in scheduling
techniques is still and open issue. As the costs for storing and processing data sets is very high
in the context of Big Data scales, every improvement on system performance has a significant
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impact. More than this, with the efficient scheduling also means a better usage of the resources
and reduced costs for consumed energy or data centers administration [32].

As the storage and computation systems evolve, the scheduling topic has approached and
consider new techniques for the new challenges. The challenges are: variety of tasks and data
types, data volume to be managed or the response time required. A class of independent tasks
are BoTs requests, that contain a very large number of tasks that do not need to communicate
during execution and their execution does not depend on the results of other tasks. Examples
of applications that generate BoT jobs include intensive search applications - brute force for
password breaking, Monte Carlo simulations or image processing. The tasks with dependencies
impose additional restrictions in the scheduling process. The workflows describe a process (busi-
ness or scientific) and a set of rules (dependencies) are also tasks with dependencies and may be
described using a DAG with nodes for each task and edges for each dependency. Examples of
scientific workflows are generated by applications including the Montage general engine [35]
for computing the mosaic of input astronomical images or the Neptune project, that acquires
measurements from ocean temperature/currents sensors and models them.

2.1. Independent Tasks Scheduling

The existing heuristic for independent tasks scheduling algorithms have some advantages
considering that large amounts of tasks have to be processed: the speed is very good due to the
fact that they do not search the best scheduling, but a good approximation, so it’s suitable for
large problems and the computed schedule is not the optimal, but a near-optimal one. In [21] six
heuristic algorithms are described and compared: five of them are popular pure heuristic schedul-
ing algorithms and a new heuristic is proposed. They are compared using the total makespan and
flowtime.

Min-Min algorithm uses the minimum completion time as selection metric. The main idea
is that the tasks that have the earliest end time, have the highest priority. For each task, the
minimum completion time is computed across all machines and just one is selected. Next, the
global minimum across all tasks is selected along with the corresponding machine. The task is
removed from the list, assigned to the corresponding machine and the workload is updated.

Max-Min algorithm also uses the minimum completion time as selection metric, and is sim-
ilar to the Min-Min algorithm. Here, the idea is that for each task, the minimum completion time
is computed across all machines and just one is selected, and next, the global maximum across
all tasks is selected along with the corresponding machine.

Both min-min and max-min algorithm have some limitations for certain types of job sets.
When using min-min, the efficiency decreases when we have a larger number of ’small’ tasks
and for max-min when there are more ’large’ tasks to be scheduled. The Longest Job to Faster
Resource - Shortest Job to Faster Resource (LJFR-SJFR), comes as a compromise between the
previous algorithms. For a number of m initial steps, the longest job (maximum completion time)
is assigned to the faster resource, and next it alternatively assigns both shortest job (minimum
completion time) and longest job to the faster resource.

The Suffrage algorithm computes the minimum and second minimum completion time found
for each task and the suffrage value, defined as the difference between the two computed values.
The global maximum suffrage value across all tasks is computed, and the task with largest suf-
frage value is assigned to the machine with minimum completion time for the selected task.

In the Workqueue algorithm, at each step, a random task is selected and removed from the
list, it is assigned to the machine with the minimum workload and the workload is updated.
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The Min-Max algorithm is the heuristic proposed in [21]. It uses a combined metric for
scheduling evaluation based on the minimum completion time, which is computed for each task
and also the minimum execution time. The evaluation metric for each task is the execution time
on the machine with minimum completion time divided by the minimum execution time. The
maximum ratio is computed across all tasks, and the selected task is assigned to the correspond-
ing machine.

An agent-based Cloud scheduling approach for BoT is described in [16]. The agents involved
in the scheduling scenarios are: Consumer Agents (CA), Resource Agents (RA), Broker Agents
(BA) and Service Providers Agents (SPAs). The CA submit requests to multiple BAs, which send
back a proposal. Then the CA selects the cheapest BA. In the next stage, the BA selects resources
from multiple Cloud SPAs, and schedules the tasks with one of the described 14 heuristics. The
communication between the brokers, service providers and resource agents is enabled via the
contract net protocol (CNP). In the experiments presented in the paper, the approach handled
heavy workloads if enough Cloud resources were available.

Another algorithm for scheduling independent tasks is HySARC? [39]. Its goal is to improve
the workload on the available resources by taking into account the heterogeneity of the resources
on the one hand (the resources are clustered and labeled) and the different types of tasks (the
incoming tasks are also clustered). Therefore, the topics of interest for this paper are clustering,
resource provisioning and hybrid scheduling that uses scheduling algorithms for different clusters
of tasks.

2.2. DAG Scheduling

The DAG representation of a job with multiple tasks is G(V, E) where V is the set of tasks with
a computation cost assigned (the nodes and weights) and E is a set of communication messages
and dependencies which have assigned a communication cost (directed edges and weights) [22].
Most of the DAG traditional scheduling algorithms use the following attributes of a DAG to
assign the tasks to resources: 7-level of a node is the length of a longest path from an entry node
reaching the current node, summing the node and edge weights from the path, called also static
level (sl); b-level of a node is the length of a longest path to an exit node from the current node,
summing the node and edge weights from the path; ALAP (As-Late-As-Possible) the maximum
delay for the execution start time of node, so that the total schedule length is not delayed, called
also Latest Start Time (LST); ASAP (As-Soon-As-Possible) is another name for the t-level, called
also Earliest Start Time (EST).

In [17] four algorithms for DAGs are compared: two static algorithms and two dynamic
ones. These algorithms are based on list scheduling: nodes are added to the list using some of
the attributes above or a combination and the resource is selected to optimize a cost function.
The static algorithms prioritize the tasks, and then select the resource and for the dynamic ones,
these phases are not disjoint, so the resources are involved in task selection.

The Highest Level First with Estimated Times (HLFET) algorithm uses the static level at-
tribute (s/). The first nodes to be scheduled are the entry nodes, which are sorted descending
using this value. Until all tasks are scheduled, the first node in the list is scheduled, all the other
nodes that became available are inserted in the list and the list is sorted again.

In the case of Modified Critical Path (MCP) the priority criteria is the ALAP of a node as
the scheduling priority. The nodes are added to a list in ascending order of ALAP values and use
the ALAP values of the children to break ties. Each task is then scheduled on the resource that
allows earliest start-time using.



At each step, Earliest Time First (ETF) algorithm computes the global minimum execution
start time across all ready tasks on each resource, selects the pair (node, resource), schedules
the task on the corresponding machine and updates the list with any new ‘ready nodes’. The
algorithm starts with the entry nodes list.

A composite attribute for tasks priority is used in the Dynamic Level Scheduling (DLS)
algorithm. The Dynamic Level (DL) is the computed as the difference between the s/ and the
EST, for each task on each resource. At each iteration, the DL is computed for all ready nodes
and the pair with the largest DL value is selected. The difference between DLS and ETF is that
ETF always schedules the tasks in ascending order of the EST, when DLS uses for start using the
descending order of the sl and towards the end uses the ascending order of EST.

The Mobility Directed (MD) algorithm [41] uses a more complex metric in the scheduling
process, named the relative mobility of a node that depends on the current Critical Path (CP)
length, the t-level, b-level and the weight of the node. For nodes on the critical path this attribute
has value 0. The algorithm starts with all nodes in a list, selects a node with minimum value for
the relative mobility and has no predecessors with the same minimum value. After the node is
scheduled on a machine using a condition for schedule a task on resources, the list of scheduled
tasks for that machine can be updated, and also the DAG will be modified, by changing edges
weights to 0 or adding new edges. So, at each step, the relative mobility value is recomputed for
each node left to be scheduled and for the new DAG. A main advantage compared to the four
previous algorithms is that an optimal schedule is generated even for DAGs with a large number
of joins and forks (a large number of levels).

The Dynamic Critical Path (DCP) was proposed in [23]. It also has the advantage of gen-
erating an optimal schedule is for DAGs with large number of joins and forks. The algorithm
is based on the node’s mobility, a metric similar to the relative mobility, and the difference is
that it does not depend on the node weight. DCP selects node with minimum difference between
Absolute-Latest-Start-Time (ALST) and Absolute-Earliest-Start-Time (AEST) (same value as
the node mobility). For resource selection it uses look-ahead strategy.

In [40], the authors propose a clustering based scheduling algorithm suitable both for inde-
pendent and DAG tasks. The resources are profiled as they are added or removed, and the tasks
are labeled as they arrive. The tasks are scheduled on clusters of machines according to the
labeling. In this paper, the considered algorithms for DAGs are MCP and ETF.

In [29], a DAG scheduling algorithm based on genetic algorithms is presented. The chro-
mosome representation is compact and easy to implement when facing crossover or mutation.
Another characteristic is that the mutation rate of new chromosomes is dynamic and depends on
the fitness functions variation. The fitness function in this paper is the balancing of workload for
the resources.

The multiple priority queue genetic algorithm (MPQGA) proposed in [43], is a hybrid ap-
proach for scheduling DAGs that combines evolutionary (genetic) and heuristic algorithms. The
genetic algorithm (GA) is used to assign priorities to the tasks. For mapping a task to a proces-
sor the ETF heuristic algorithm is applied. The MPQGA algorithm is evaluated using both task
graphs from real-world scenarios, like Fast Fourier Transformation or Molecular dynamics and
random DAGs.

In [25] a scheduling algorithm for workflows is proposed. The algorithm is based on a par-
ticle swarm optimization (PSO) heuristic applied for scheduling: Variable Neighborhood Search
(VNS). In the paper, the theoretical model for workflows and PSO is described, and the schedul-
ing context is mapped to the particle space (encoding step). The last step is to decode the opti-
mization result to an actual schedule: the decoding step.
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The Reliability Maximization with Energy Constraint (RMEC) algorithm [44] has been de-
signed to address the scheduling problem in a heterogeneous system, considering possible fail-
ures of the applications, and trying to minimize the energy consumption. Tradeoffs are made
between having a reliable system and a low energy consumption. The first important phase is
to set priorities for tasks using two DAG computed properties: URank and DRank. Then, the
processor is selected using the best frequency-voltage pair (lowest energy & highest availability).
The final step is processor assignment. The evaluation tests were performed on random DAGs
and real-world examples (FFT or LU DAGS).

In the domain of parallel and distributed systems in general, and scheduling in particular,
machine learning techniques are used for enhancing the traditional algorithms with forecast ele-
ments [24, 8]. The elements that are subject to forecast include: system load, consumed energy,
workflow forecast or resources status (churn analysis on machines) so the scheduling is more
efficient.

In [20] the scheduling algorithm is based on a neural network (NARX) used for the prediction
of the system load. The inputs for the method are the load intervals for the CPU and variance of
future system characteristics (new resources may be added) and the output is the load decision
for a machine (1/0). The output is used in the scheduling process.

The scheduling algorithm proposed in [15] intends to provide an efficient scheduling for
high-loaded systems, that execute workflows. The algorithm detects patterns in recurrent tasks,
and aims to provide as forecast the future workflow of the system, and uses multiple forecasting
methods (SSA, ARIMA).

2.3. MTC Scheduling

Data intensive subset of MTC has been payed a lot of attention. In [31] has been proposed
an approach for enabling data intensive many tasks computing, including: efficient acquiring
of storage and computing resources in a dynamical way as the requests arrive, replicates the
data depending on the demand and also schedules the computation on resources close to the
data storage units. So, one of ’data diffusion’ main contributions in the paper is the data-aware
scheduler which implements four policies for dispatching tasks and three of them consider the
data locality. In [33], the authors a hybrid algorithm for scheduling many-tasks computing. They
designed an Asymptotically Optimal (AO) scheduling algorithm that depends on the existing
scheduler in the system - they considered the case of First Come First Served (FCFS). Next, using
a mathematical model, they determine the point when to switch from the default scheduler to AO
as the job rate increases, and also the point when to switch back when the job rate decreases.

3. Defining the Box: Proposed Scheduling Algorithm and MLBox Tool Architecture

In this section we describe the model for tasks, resources and the proposed scheduling al-
gorithm along with the used scheduling algorithms. Then, the architecture of MLBox and their
components are presented. The necessary and sufficient conditions for a feasible scheduling
solution are detailed.

3.1. Theoretical Model

A Task is defined as a set of operations that have to be executed on the same processing unit.
We use four of the most common parameters to describe it formally:



T =(P|,P},P},P)), (1)

where:

. PIT is the required CPU processing time by to execute the job on a resource;

° Pg is the IO time in which the task has to read the input in order to start the execution, and
to write the output data when the execution is done;

. P; is the preemption flag (preemptive or non-preemptive);

e P! is the deadline.

For our model, we also have to define the Requests or Jobs, representing a set of Tasks, as
follow:

T ={T;, 1 <i<nlli = (P], P}, P}, P} 2)

The set can contain independent tasks (BoT), or tasks with dependencies/restrictions (work-
flows). The BoT types of requests we need no additional definitions, as they are classified using
the properties of the elements in the set. The requests that contain tasks with dependencies will
be modelled as DAGs (Directed Acyclic Graphs). The formal definition of a DAG used in the
paper is:

G =G(V.E,w,0), 3)

where:

e V is a set of nodes representing the abstraction of tasks, so node n; refers to task 7;. Each
node is associated a weight (w), where w(n;) is the computational cost of task 7; (same as
PTi).
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e [Eis aset of directed edges that model the dependencies between tasks, noted as e(n;, ;).
A weight is also associated to each edge (we will refer to it as the cost of the edge), and
c(n;, nj) represents the time needed to transfer output data from task 7; as input data for
task 7';. If the two tasks are executed on the same resource, the communication cost will
be 0.

For the tasks that are part of a DAG request, we defined in the previous section multiple
properties used in the scheduling algorithms. These properties depend on the DAG structure,
the position of the node in the DAG and the weight functions. We identified simple properties,
like the b-level, t-level, ASAP, ALAP or sl or different combinations of these metrics, like the
mobility or relative mobility of a node.

The BoT type request is defined by the properties of the tasks and their values. For the DAG
type of jobs we identify two additional characteristics: the granularity (g) and Communication
to Computation Ratio (CCR). These two metrics for DAGs comparison are different measure
for the computation/communication ratio. A DAG where the computation is dominant is coarse-
grained (or CPU-bound). In a fine-grained DAG, the communication dominates the computation
(IO-bound).



Figure 1: Join and Fork structure in a DAG

For the granularity g of a DAG G we use the definition introduced in [13]. We consider the
structure of a fork associated to node n, (%) and a join associated to node n, () as shown in
Figure 1. We define the granularity of a join, a fork and of a DAG as follows:

ming, ey {w(n;)}

g(Fy) = (fork granularity) @
max(nx,ni)EE{C(nx» nl)}
min, ey {w(n;)} - .
g(TJy) = : (join  granularity) ®))
maxp, nee{c(mi, ny)}
8(G) = min(g(F).8(Jx) (DAG  granularity) (6)

We defined two values for CCR: CCR(G) represents the average edge weight divided by the
average node weight and CCR,,(G) uses the max function for the computation:

[V] = Z(X,i)eE c(x, i)
|E] * 2 ey w(x)

max ek {c(x, i)}
max ey {w(x)}
For a coarse-grained DAG G, CCR(G) > 1 and g(G) > 1. In the case of fine-grained ones,

CCR(G) < 1 and g(@) < 1. At last, both metrics have values ~ 1 for mixed DAGs.
A Resource is defined by a set of the following properties:

CCRy(G) := CCR(G(V.E,w,0)) = )

CCRu(G) = CCRu(G(V,E,w,0)) = ®)

R = (P}, PY), ©)

where

. Pf is the processing speed defined as the amount time in which an atomic operation is
executed;

. P§ is the IO speed: the time needed to read or write a unit of data from or to the disk.

A set of resources is defined as:

R={Ri.1<i<mR; =P P} (10)



3.2. Proposed Scheduling Algorithm

Machine Learning (ML) represents a set of techniques used to create prediction models that
are trained based on historical data and may produce valuable outputs for new input data [3]. The
ML algorithms describe either supervised or unsupervised learning. In the case of supervised
learning the algorithm learns to predict outcomes for new input data sets other than the training
data. The unsupervised learning does not focus on predicting output, but to classify data using
different features. In our approach we apply a supervised learning technique. The underlying
motivation is to select a suited scheduling algorithm for a workload or a workflow, based on a
prediction model trained with historical data an the features of the new request. In ML specific
terms, the training data set is represented by a large number of requests (workloads modeled
as BoT or workflows modeled as DAGs). Each request is characterized by several features like
type, number of tasks, I/O rates, computation requirements, communication cost. Also, each
request in the training data is labeled with the scheduling algorithm that provided best results
as the measured outcome. The supervised ML contains a large number of algorithms: decision
trees, regression, neural networks, state vector machines, kernel based techniques or instance
based methods.

In this paper we propose a scheduling algorithm for asymptotic scheduling, based on a ML-
Box tool. The algorithm is resumed as follows (see Algorithm 1). When a request arrives, the
scheduler has to decide how to schedule the tasks on the available resources. The decision is
taken using a MLBox tool: the scheduler provides as input for the MLBox the metadata of the
request (the properties we defined above) and expects as output the scheduling algorithm that
should be used, one of the traditional algorithms the system ’knows about’. In the initializa-
tion phase of the system, the underlying machine learning algorithm of the MLBox has to be
trained, using a large number of requests with the best suited algorithm associated. In the train-
ing step, the ML algorithm build a model that will be used to decide what algorithm to use for
new requests.

Algorithm 1 Scheduling Algorithm using ML.
1: procedure ML_ScHEDULING(Request, Resources, TrainingFile)

2 MLBox.Train(TrainingFile);

3 while true do

4: Metadata = MLBox.Read_and_Profile(Request);

5: Heuristic_Name = MLBox.Forecast(Metadata);

6 Schedule_Request(Request, Resources, Heuristic_Name);
7 end while

8: end procedure

Next we detail each entity used by this algorithm’s micro-system (see Figure 2), as stated in
the previous brief description: MLBox and Scheduler.

e MLBox is used in the scheduling process to select which heuristic should be applied for
the new received request. It is based on a NN approach with multiple inputs and multiple
outputs. The input is the metadata of the request: several properties defined above like
granularity and CCR for a DAG or average 10 or CPU requirements for a BoT request.
It uses a set of requests and associated heuristics as training data. The heuristics in the
training data have to be implemented in the Scheduler, otherwise the entry will be ignored.
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Figure 2: ML based Scheduling Flow.

o Scheduler receives the execution requests and has to assign them to the resources. It im-
plements multiple heuristics. For BoT requests we chose four algorithms: Shortest Job
First (SJF), Earliest Deadline First (EDF), Min-Max and Longest Job to Faster Resource -
Shortest Job to Faster Resource (LJFR-SJFR) and four for DAGs: Modified Critical Path
(MCP), Earliest Time First (ETF), Mobility Directed (MD) and Dynamic Critical Path
(DCP). When Scheduler reads the request, it also ’profiles’ - extracts the metadata, feed
the metadata obtained as input for the MLBox, gets the scheduling algorithm to be applied
and executes it (step 4 in Algorithm 1).

3.3. Inside the MLBox

MLBox component has a key role in our scheduling algorithm: it provides the best suited
heuristic for a new request based on the model of the underlying NN. The ML technique has two
main phases: the training phase and the actual prediction phase. In the training phase, the NN
model parameters are computed. The prediction for new requests is performed using the initially
established model.

Our MLBox uses two independent NNs, one for the requests of type BoT and one for the
DAGs. The two NNs have a slightly different structure, as respect to the number of inputs,
they will have different models because the array of weights for each node will vary and they
will be trained in parallel in the initialization phase, as the training data contains both BoTs
and DAGs. The MLBox will have a distinct component (switch) to dispatch each request to the
corresponding NN, both during training and prediction phases, based on the request type.

The general rule to decide the configuration of a NN is not defined, nevertheless there are
some guidelines to be followed. The input and output layers should have as many neurons as the
number of inputs and outputs of the problem. Regarding the number of hidden layers, we can use
no hidden layer if the input/output dependence is linear, or one or more hidden layers for more
complex dependencies patterns. Generally, one hidden layer is enough to give good performance
for almost all cases (hidden layers would mean training models that are more complex). The size
of the hidden layer may be usually between the size of the input layer and the size of the output
layer (different factors may apply here). The model of the proposed NNs contains three layers:
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Figure 3: NN models for BoTs and DAGs, and detailed parameters for a single neuron.

o Input layer contains as many neurons as the inputs provided;

e One Hidden layer, that contains three neurons in both cases (in our model we have 3
neurons in the input layer and 2 neurons for the output layer, so we chose a hidden layer
with 3 neurons);

e QOutput layer contains two neurons, which values can be 0/1. The two output values encode
one of the four possible heuristics of each type of requests. If we add multiple heuristics,
we also have to increase the number of outputs.

The NN model for BoT has three input values: the percentage of I0-bound tasks (%_10), the
percentage of CPU-bound tasks (%_CPU) and the percentage of mixed tasks (%_-MIX - both IO
and CPU bound). As for a DAG G, we provide as input values, the granularity g(G), and the
Communication to Computation Ratio CCR(G).

The scope of the training phase is to compute the parameters (weights) for each neuron in
the model, for both network models proposed. As shown in Figure 3, each neuron is defined
by an array of weights corresponding to each of its input values. The output of the neuron is
represented by the result of an activation function applied to the weighted sum of input values.
The main steps in the training phase:

o Initialize all weights with random values;

o Iterate through the training data as follows: if the generated output is different than in the
data set, update weights using back propagation, and apply the new weights for the same
set of inputs. This is done until we get the correct output.

3.4. Inside the Scheduler

The Scheduler component has multiple roles in our algorithm. First, it profiles a request as it
reads it, then it calls the MLBox to get the appropriate heuristic for the job and finally executes
the selected scheduling heuristic. The metadata that is computed in the profiling phase for a
given request, has the following elements:
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o the Type is the same as the type of the request: BoT or DAG,
e a set of properties, depending on the fype:

— BoT: %_10, %_CPU and %_-MIX;
— DAG: g(G), CCR(G).

For BoT requests, we consider two very simple algorithms, Shortest Job First (SJF) and
Earliest Deadline First (EDF) and two more complex heuristics: Min-Max and Longest Job to
Faster Resource - Shortest Job to Faster Resource (LJFR-SJFR). Both SJF and EDF are static
scheduling algorithms (see Algorithm 2). The tasks are sorted using a defined criteria: descend-
ing deadline (PZ) for EDF or ascending ”length” (smallest processing time PlT) for SJF and after,
each task is scheduled on a random available resource.

Algorithm 2 Shortest Job First and Earliest Deadline First.
1: procedure SJF_EDF(tasks, resources)
2: Sort tasks ascending using P! for SJF OR
3 Sort tasks descending using PZ for EDF;
4 while rasks # ¢ do
5 if anyResourceAvailable(resources) = true then
6: R < getRandomResourceAvailable(resources);
7
8
9

T < popTask(tasks);
execute 7 on R;
end if
10: end while
11: end procedure

Algorithm 3 Min-Max algorithm.

1. procedure MIN-Max(T asks, Resources)
2: U is the set of unmapped tasks

3 while U # ¢ do

4 Z=0

5 for 7;elU do

6: Cij=W;+&j; VYReResources
7 Cyj=minC;;, &;;=min&;;; VR;eResources
8 Z=zugh

9 end for

10: Kyp = max Kij;  VKieZ

11: Schedule 7, on Ry;

12: U=U-T,

13: end while

14: end procedure

On the other hand LJFR-SJFR and Min-Max use more complex metrics that depend on the
resources, and the resource load (see Algorithm 3); these are dynamic scheduling algorithms.
Both algorithms use a common metric, the minimum completion time (MCT).
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e LJFR-SJFR uses two metrics, MCT (Longest Job) and maximum CT (Shortest Job) alter-
natively. For each metric a resource is selected. The longest jobs are scheduled on the
selected resource for some initial steps. Next, assign alternatively longest/shortest jobs;

e Min-Max adds another metric: the minimum execution time (MET) combined with MCT.
Two resources are selected for the same tasks, one for MCT (R,), and one associated with

E

MET (R},). The task with maximum ratio % will be scheduled on resource R,.
h

For DAG requests we implemented Modified Critical Path (MCP) and Earliest Time First
(ETF) - they are simple algorithms with a low complexity, giving good enough results in some
cases in a shorter time. Two more complex algorithms are Mobility Directed (MD) and Dynamic
Critical Path (DCP) which generate good schedules also for DAGs with increased numbers of
forks and joins.

e The MCP algorithm based on lists has two disjoint phases: assign priority of tasks using
ALAP and selection of resources for current task computing the earliest start time.

o In the case of ETF the goal is to keep the processors as busy as possible. It computes, at
each step, the earliest start times of all ready nodes and selects the one with the shortest
start time and the associated resource (see Algorithm 4).

Algorithm 4 Earliest Time First (ETF) algorithm.
1: procedure ETF(G, R)

2: RN = entry nodes from G; > the pool of ready nodes;
3: repeat

4: for each node n; € RN do

5: Calculate the earliest-start-time(n;) on each resource in R;

6: end for

7: Pick the (n;, R) that gives the earliest time;

8: > using the non-insertion approach;
9: Ties are broken by selecting the node n; with a higher static b — level(n;);
10: Schedule the node to the corresponding resource;

11: Add the newly ready nodes to the RN,
12: until all nodes are scheduled
13: end procedure

e The MD algorithm defines additional properties for a node in the DAG: the mobility of a
node (or moving range), the moving interval and the relative mobility. This algorithm is
also a list-based one, in which the nodes are selected in the ascending order of the relative
mobility. Then, the assignment on a resource is performed by checking that the moving
interval and range for each task already scheduled on the resource fulfill a necessary and
sufficient condition (Eq. 16 or Eq. 17). The current selected task, can be scheduled before
already assigned tasks on the selected resource. After node »; is scheduled on resource R;,
the DAG is updated: set edges that connect n; to other nodes scheduled on R; to 0 or add
edges of weight 0 between these nodes where they are missing. If any loops are created,
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then schedule 7; on another resource.
7s(n;) = ASAP(n);
7(n;) = ALAP(n); (11)

Tr(n) = 1o (ny) + w(ng);

MR(n;) = [ts (i), Te(n;)]  (moving  range) 12)
MIm;) =[rs(mi), Tr(n;)]  (moving interval) (13)
M) = t.(n;) — ts(n;)  (mobility) (14)

M, () = % (relative  mobility) (15)

Consider the set {n,, n,,} of nodes already scheduled on resource R;. The necessary and
sufficient condition to schedule node 7; on resource R;is:

MIn)NMI(n,)=¢, Vn,, (16)

dk: wnj) <min(te(n;), To(My,)) — max(ts (1)), s (Ry,_,) + W(ty,_,)) 17

where MI(nj) N MI(ny,) # ¢.

e HLFET was implemented as an alternative to MD (if the algorithm takes too much to
schedule the resources) - it prioritizes tasks using the static b-level attribute.

e A composite attribute for tasks priority is used in the DLS algorithm. The dynamic level is
the computed as the difference between the sl and the EST, for each task on each resource.
At each iteration, the DL is computed for all ready nodes and the pair with the largest DL
value is selected. The difference between DLS and ETF is that ETF always schedules the
tasks in ascending order of the EST, when DLS uses for start using the descending order
of the sl and towards the end uses the ascending order of EST.

4. Evaluation Methodology and Results

Current scheduling research challenges are generally caused by the large data sets gathered,
analyzed, processed, represented and stored. Also for our test case scenarios, we chose both
independent tasks and tasks with dependencies (workflows) as the current applications generate
these both types of jobs. Moreover, the BigData applications may generate CPU intensive (they
process a large amount of data) tasks, I/O intensive (they access remote data) or both, so we
considered them when generating tasks for DAGs and BoT.
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4.1. Implementation Details

For the validation of the scheduling algorithm we presented in this paper, we chose to imple-
ment the described model in CloudSim. The implementation of the MLBox Scheduler consists in
three main entities: Main, Scheduler and MLBox. They are associated with three of the packages
of the main structure (as shown in Figure 4). The fourth package contains the model classes,
which define the additional types needed in our algorithm. The Main component handles the in-
coming requests: reads a request, profiles it, gets the information about the scheduling algorithm
to be applied and submits the request to the Scheduler component. The scheduler executes the
heuristic associated with the request and submits the tasks to the resources.

Main o Task
£ o
g g Resource
< LaunchSimulation S paG
2 2
b £ DAGMetadata
o ProcessRequest [}
% _E BoTMetadata
% Scheduler x MachinelearningBox
3 a
o —
2 £ NeuralNetwork
a c
c o
© SchedulingAlgorithms ‘5 Neurallayer
g 2
3 _% Neuron
© T

Figure 4: MLBox Scheduler Main Package Structure.

The main steps for realizing our experiments were: generate training data for the MLBox,
train the ML algorithm and get the model both for predicting the scheduling algorithm for BoTs
and for DAGs, use the MLBox to get the optimal scheduling algorithm for a given request.

4.2. Experiments Set-Up

1. Hardware configuration
In our experiments we considered a fixed configuration for the Cloud resource. We used
a homogeneous Cloud due to the fact that the DAG scheduling traditional algorithms rely
on identical processing elements. The Cloud infrastructure we used contains 10 identi-
cal virtual machines. They are deployed on multiple hosts (having enough memory and
processors elements) to accommodate the VMs. For a single VM we have the following
characteristics:

e Processing Capacity 5000 MIPS;
o RAM: 1024;

e Processing Elements number: 2 PEs (PE is the equivalent of a Core)
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2. DAG generation
We generated the DAGs we used for testing with a program written in C, that may be
configured with some general parameters (like maximum and minimum nodes on a level,
maximum and minimum levels), the probability to have and edge between two random
nodes (edges are generated always from the higher levels to the lower levels), and the
maximum value for a node weight and for an edge weight. Based on this configuration,
the DAGs parameters are generated according with the distribution presented in Figure 5.
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Figure 5: Number of tasks in the generated DAGs and properties of generated DAGs (CCR and granularity).

We generated 140 DAGs. The number of tasks in each DAG varied too, because the
number of nodes on each layer and number of layers are generated randomly. In our data
set, we had between 200 and 600 tasks per DAG.

As a more detailed description of the DAG structure: we generated DAGs in the three
categories identified in the previous sections: coarse-grained, fine-grained and mixed. To
achieve this, we varied the maximum value for nodes and edges weight. For the generated
graphs, we did not manage to get a granularity higher than one, but the CCR values were
lower, greater and around 1.
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4.3. Numerical Results

For evaluating the algorithms, we considered as metric the makespan, so the algorithm with
minimum makespan is selected as the best for the request (see Figure 6). As a short summary, our
algorithm receives a request, creates a profile (generates the metatdata), gets the best algorithm
from the MLBox, and the executes that algorithm.
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10000

Figure 6: Makespan comparison.

To create the training data for the NN, we ran all scheduling algorithms for the generated
DAGs, chose the best algorithm and added an entry in the training data:

e Test Inputs: g(G) and CCR(G);

e Target Outputs: by, b, (the codification of the scheduling algorithm: *00” - ETF, *01’-MCP,
’10’-HLFET, *11’-DLS).
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Figure 7: Profiling Delay.

In terms of evaluating the performance for the algorithm we have to take into account the fol-
lowing: the makespan and mean flowtime of the generated schedule, together with the scheduling
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execution time are the same as for the best algorithm for the current request. The additional step
we proposed is the decision of the algorithm divided in two: profiling and predict using the
MLBox (see Figure 7).

We analyzed the delay introduced by the profiling phase, by measuring its execution time in
the scheduling process for all DAGs in the training data set. The delays for BoT applications are
comparable, and depend on the size of the request (in terms of number of nodes).

The MLBox training takes place in the initialization of the system and does not influence
the actual scheduling speed. For the prediction delay, this is not important as size, because the
number of outputs and inputs is reduced, the NN has a simple layout and the model is already
defined.
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Figure 8: Test DAGs results.

For testing of the ML algorithm, we used a small set of particular DAGs inspired from the
ones used to model different types of workflows (Laplace graph, Balanced graph or LU graph).
The evaluation of selected scheduling algorithm is presented in Figure 8. The algorithm chose
the best technique in most of the cases, we tested this by running all algorithms for the DAGs,
compare the makespan and check with the result of the NN prediction (see Table 1).

| DAGId | Actual Optimum | Prediction |

1 MCP ETF
2 ETF ETF
3 ETF ETF
4 ETF DLS
5 ETF ETF
6 ETF ETF
7 ETF ETF
8 DLS ETF

Table 1: Actual vs. Prediction.
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4.4. Interpretation of results

Our previous experiments proved that the algorithm we implemented performs well for
scheduling requests in a Cloud simulation environment. The decision part does not delay the
overall algorithm speed due to the simple (but efficient) architecture of the NN, and the fact that
the weights needed for prediction are determined at system start up.

Even though the profiling introduces a small delay, the best scheduling algorithm is chosen,
so the makespan is reduced and costs of execution. This system it is not suited for real-time
systems, that need a very large speed, but is a good choice for system that face high work loads
periods, receive large data sets that can be delayed. If no delay is accepted, a default scheduling
algorithm could be applied.

5. Conclusions

In this paper we proposed a scheduling algorithm based on a Machine Learning Box for
asymptotic requests: we described the model we built, then the implementation in a simulation
environment of the novel algorithm and of 8 heuristics both for BoTs and DAGs and last, we per-
formed some tests for comparing the makespan and mean flowtime both for large BoT and DAG
requests. The algorithm we proposed in the paper targets the Big Data applications challenges:
requests with very large number of tasks, increased CPU and IO requirements and requests with
variable representation of the tasks (BoT and DAG). The algorithm performs well, as the ML
algorithm for predicting the best suited heuristic has a very good speed as the model is already
computed, and the prediction is based on some aggregated characteristics of the requests. The
overall scheduling process is not delayed by this prediction step. The ML training step is not
considered as part of the scheduling process, and it is performed at the initialization of the sys-
tem, based on input training data from a persistent storage, a model is determined for each of the
task types (BoT and DAG) and the model is used for further predictions. We validated both the
Machine Learning algorithm and the proposed scheduling approach. We performed tests for to
check the model of the MLLBox and analyzed the performance comparison of our algorithm and
the traditional heuristics.

As future work, the proposed model and actual scheduling algorithm may be enhanced with
several improvements. The development directions we identified are: consider the resource het-
erogeneity and adapt the DAG heuristics that consider that the processing elements are identical,
consider the idea of dynamic resource provisioning and propose an integration of the system in a
real-life Cloud platform. Resource heterogeneity should be involved in the scheduling algorithm
because modern Cloud systems use heterogeneous resources. The Cloud heterogeneity has some
advantages like easily switch from one architecture to another based on requirements and the user
groups. Resource provisioning is used frequently by Cloud providers: resources are added to the
system on peak utilization periods or removed when the work load decreases. In this transition
period, the system should efficiently execute incoming jobs, even though the system is changing.

The algorithm could be also tested and validated in real Cloud environments, like Hadoop,
Amazon’s EC2 or BlueMix from IBM. Int this way the experiments would reveal real-life situ-
ations. The proposed steps for achieving this goal do not depend on the selected platform (just
the actual scheduling step) and are resumed as follows:

e deploy the MLBox as a stand alone application on the same system as the scheduler and
provide the training data;
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e deploy the Main application and design a communication protocol between the Main ap-
plication and the MLBox and Scheduler;

o extend the default scheduler of the system with the required heuristics, and the new schedul-
ing algorithm. This step depends on how the scheduling mechanism is implemented in the
selected platform.
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