
Manuscript Details

Manuscript number COMPAG_2017_433

Title CLUeFARM: Integrated Web-Service Platform for Smart Farms

Article type Research Paper

Abstract

Smart farming is a relatively new domain which has popularity nowadays. It emerged from the need to produce more
with less effort and it consists of integrating modern technologies in conventional agriculture to raise the quality and
the quantity of agricultural products. This paper describes an integrated web-service platform which aims to increase
the quality of products grown in farms and to support business development in agriculture related fields. The platform
enjoys the benefits of Cloud computing like flexibility, availability or security and it can be accessed at any time, in any
place by using just an Internet connection. It allows users to locate and efficiently manage their farms providing access
to different types of statistics and predictions. It also acts as a social network allowing users to interact with each other
by sending private messages or posting on the forum or on the blog. In addition to describing the services offered by
the platform and the interaction between them, this paper also presents the architecture of the system and the
performance test results which prove the efficiency of the platform.

Keywords Smart farming; Cloud computing; Web Services; Workflow; Data management

Corresponding Author Florin Pop

Corresponding Author's
Institution

University Politehnica of Bucharest

Order of Authors Madalin Colezea, George Musat, Florin Pop, Catalin Negru, Alexandru
Dumitrascu, Mariana Mocanu

Suggested reviewers Lucia Vacariu, Radu Drobot, Stelios Sotiriadis, Aniello Castiglione

Submission Files Included in this PDF

File Name [File Type]

cover_letter.docx [Cover Letter]

ClueFarm.docx [Manuscript File]

highlights.docx [Highlights]

To view all the submission files, including those not included in the PDF, click on the manuscript title on your EVISE
Homepage, then click 'Download zip file'.

Cover Letter

CLUeFARM: Integrated Web-Service Platform for Smart Farms

Madalin Colezea, George Musat, Florin Pop, Catalin Negru, Alexandru Dumitrascu, Mariana
Mocanu

Smart farming is a relatively new domain which has popularity nowadays. It emerged from the need
to produce more with less effort and it consists of integrating modern technologies in conventional
agriculture to raise the quality and the quantity of agricultural products. This paper describes an
integrated web-service platform which aims to increase the quality of products grown in farms and
to support business development in agriculture related fields. The platform enjoys the benefits of
Cloud computing like flexibility, availability or security and it can be accessed at any time, in any
place by using just an Internet connection. It allows users to locate and efficiently manage their farms
providing access to different types of statistics and predictions. It also acts as a social network
allowing users to interact with each other by sending private messages or posting on the forum or on
the blog. In addition to describing the services offered by the platform and the interaction between
them, this paper also presents the architecture of the system and the performance test results which
prove the efficiency of the platform.

Our paper describes a web platform that comes in handy to fulfill the needs of the farmers, giving
them the possibility to manage monitor and control their farms from distance through any device
that has an internet connection (a phone, a table or a personal computer). Before describing the
architecture of the platform, we presented the architecture of the system which contains the
platform. The platform is constituted of two main applications, decoupled from one another. We
propose an architecture along with the technologies used and a motivation for choosing them, for
each of these two applications and we also discuss the communication between them. We analyzed
the performance of the platform through several tests which reveal the load times of the platform
and the response times of the services. We also explained the results. These are the main
contribution of our paper.

Corresponding Author,

Prof. Florin Pop

1 CLUeFARM: Integrated Web-Service Platform for Smart Farms
2

3 Madalin Colezea1, George Musat1, Florin Pop1,2,*, Catalin Negru1, Alexandru Dumitrascu3,
4 Mariana Mocanu1

5

6 1Department of Computer Science, Faculty of Automatic Control and Computers, University Politehnica
7 of Bucharest, Romania
8 Emails: madalin.colezea@stud.cs.pub.ro, george.musat@stud.cs.pub.ro, florin.pop@cs.pub.ro,
9 catalin.negru@cs.pub.ro, mariana.mocanu@cs.pub.ro

10

11 National Institute for Research and Development in Informatics (ICI), Bucharest, Romania
12 Email: florin.pop@ici.ro
13

14 3Department of Automatic Control and Systems Engineering, Faculty of Automatic Control and
15 Computers, University Politehnica of Bucharest, Romania
16 Email: alexandru.dumitrascu@acse.pub.ro
17

18 Abstract
19 Smart farming is a relatively new domain which has popularity nowadays. It emerged from the need to produce
20 more with less effort and it consists of integrating modern technologies in conventional agriculture to raise the
21 quality and the quantity of agricultural products. This paper describes an integrated web-service platform which
22 aims to increase the quality of products grown in farms and to support business development in agriculture related
23 fields. The platform enjoys the benefits of Cloud computing like flexibility, availability or security and it can be
24 accessed at any time, in any place by using just an Internet connection. It allows users to locate and efficiently
25 manage their farms providing access to different types of statistics and predictions. It also acts as a social network
26 allowing users to interact with each other by sending private messages or posting on the forum or on the blog. In
27 addition to describing the services offered by the platform and the interaction between them, this paper also presents
28 the architecture of the system and the performance test results which prove the efficiency of the platform.
29 Keywords: Smart farming, Cloud computing, Web Services, Workflow, Data management
30

31 1. INTRODUCTION
32 Nowadays, the Internet has become an indispensable need for most people. It has started as a small network that
33 connects a few stations and it has evolved over time becoming the only global network that interconnects all the
34 people around the world.

35 Lately, a new step has been made with the advent of the concept of IoT (Internet of Things). IoT is a network of
36 “things” such as vehicles or buildings that have several sensors or actuators which allows the network to collect
37 data or to control them from distance. The reunion of Internet and the IoT in a single network it is what is happening
38 nowadays. This is called IoE (Internet of Everything), a network consisting of billions of devices which produces a
39 huge amount of data and people that uses those data for different tasks and control the devices from distance. For
40 instance, (Liao et. All, 2016) propose a system that monitors both environmental factors and growth traits of
41 Phalaenopsis providing quantitative information with high spatiotemporal resolution.

42 The quantity of data produced and the need to process it to get useful information raises several problems: a lot of
43 processing power and storage is needed to be able to analyze the data in real time. A viable solution has been shown
44 to be the Cloud computing. It is a modern concept in computer science and it consists of a distributed system with
45 enough processing and storage power to do the tasks described above. The user does not need to be aware of the
46 physical location of the equipment he uses. It offers some advantages, including flexibility, availability or security.

47 A high number of classical fields starts to integrate new technologies in their daily activity to enhance productivity
48 and the quality of their products. Such an area is agriculture, one of the most important sectors of activity worldwide.
49 In classical agriculture, the farmer is the only one responsible for the management of all activities and he is the one
50 who take all the decisions. A good decision can be taken only after an analysis, depending on many factors
51 (temperature, humidity). This requires a lot of time and forces the farmer to be physically present at the farm
52 location.

53 In a report publish by the FAO (Food and Agricultural Organization of the UN) the world population will reach 9.6
54 billion people by 2050 thus the food production must increase by 70 percent to feed all those people. Some of the
55 barriers to fulfilling this request are the climate that keeps changing and the high consumption of energy and fresh
56 water (the agriculture consuming 70 percent of the available fresh water resource) (Alexandratos and Bruinsma,
57 2012). FAO presents as a solution to these threats the use of “Smart Farming”. The industrialization of greenhouses
58 (named “farms” further on this paper) has led to the concept of “Smart Farm”. A “Smart Farm” is a farm capable
59 to automatically perform several actions for auto management and enables monitoring of several parameters.

60 This paper describes a web platform that comes in handy to fulfill the needs of the farmers, giving them the
61 possibility to manage monitor and control their farms from distance through any device that has an internet
62 connection (a phone, a table or a personal computer). Through the services integrated in this platform, a new
63 approach for farming is encouraged, an approach that combines the classical agriculture with technology. Thus, a
64 farm become a controlled environment and the farmer is helped to take the best decisions since he can supervise
65 the activity in the farm or due to the information collected from the online community that is created.

66 In a context in which the agriculture already uses the advantages offered by new technologies, with existing
67 complete hardware and software solutions consisting of a network of sensors and an application that displays to the
68 user data collected by the sensors, the next real challenge is to find a working solution to centralize all the farms
69 regardless of the hardware or the physical location of the farm. Mobility is another important aspect as the present
70 solutions do not allow the farmer to monitor his farm from distance (Bojan et. all, 2015, So-In et. All, 2014).

71 The project1 described in this paper aims to fulfill these shortcomings, proposing a solution with which the only
72 requirement for monitoring one’s farm is to have a device connected to the internet, thus the mobility is no longer
73 a problem. Moreover, the data presented to the user are processed in real time and displayed in a graphical form
74 offering statistics and correlations based on them.

75 In addition, other useful services are integrated making the platform a place where the farmers can share their
76 thoughts or get information that helps them to take the best decisions which will increase productivity, this being
77 the primary goal of the agriculture for the years to come.

78 This paper describes an intelligent platform designed exclusively for farmers and it is meant to respond to their
79 needs. It helps the users, the farmers, to manage and supervise their farms from any device with an intuitive, user
80 friendly and appealing interface.

81 To be able to meet the other goals we must first implement a web platform. It should be scalable and performant so
82 it can be deployed in a Cloud environment. Its main purpose is to serve as a point of access for all the services
83 offered to the farmers. Another goal of the web platform is to provide an easy way to integrate other services in the
84 future. Security is also a crucial aspect because the platform stores personal information about the user and his
85 farms, information that must be kept private.

86 Regarding the design of the platform, this should be displayed as a dashboard with a left side menu where the user
87 can access any of the services with just one click. The interface must be responsive, intuitive and easy to use from
88 any device (phone, tablet or laptop). The platform can be regarded both as a farm management system and as a
89 social network.

90 The farm consists of several services that fulfill the farmer’s needs regarding the management and supervisions of
91 their farms. The farm management service must allow the user to register a farm into the system by providing a
92 couple of information about it. For a user to be able to localize a farm he must have highly detailed geographical

1 ClueFarm: http://cluefarm.hpc.pub.ro/

93 information so, for simplifying this process the service must allow the specification of the location of the farm using
94 an interactive map. The user must have the possibility to remove the farm from the platform anytime he wants.

95 Many of the significant decisions made by farmers are based on weather predictions because the temperature or
96 meteorological phenomena have a bearing on the agricultural activity. Therefore, the weather service is an important
97 one. Moreover, it must provide precise weather forecast for the following seven days, giving the users the
98 opportunity to choose between a variety of weather providers.

99 The data taken from the sensors are difficult to interpret in the form in which they are generate (time series)
100 therefore, the statistics service oversees correlating those data and offers the user the possibility to view the results
101 in a more intuitive graphical manner for each parameter. When an event occurs, the user is informed both by a
102 notification in the platform and by email.

103 The other aspect of the platform is the social network one. The main goal of this aspect is to create a strong and
104 active online community of farmers and specialist in agriculture. The platform provides several services in order to
105 achieve this goal. The users can create or join already existent groups, they can comment on the forum or post
106 complex articles on the blog on different subjects related to agriculture. A messaging service is also available.

107 2. Related Work
108 Nowadays, more traditional areas began to use new technologies to increase their productivity and product quality,
109 providing intelligence to different environments. Among them there is also agriculture, this causing the appearance
110 of the “Smart farming” concept. Another important aspect is finding a reliable source of information that helps the
111 user to make the best decisions [3].

112 The appearance of the Internet of Things (IoT) parading was a big step further, thus allowing connecting to the
113 Internet of many of the objects in our surrounding. This concept was created by Kevin Ashton in 1999 (Ashton,
114 2009) but, its meaning has changed a lot over the years with the evolution of technology. According to (Kruize et.
115 all, 2016) IoT has three main components:
116 Hardware – consisting of sensors, being the main source of data and actuators that allows the remote
117 control of different things;
118 Middleware – responsible for storage and data analysis;
119 Presentation – widely accessible tools for visualization and interpretation of data;
120 Regarding IoT one of the biggest challenges is storing and interpreting in real-time the enormous quantity of data
121 generated by the sensors. This can be done with the use of Cloud Computing technology. Cloud infrastructure can
122 provide the necessary storage and processing power for doing such real-time analysis, the only limit for applications
123 development being the human imagination.
124 “Smart farming”, also known as “precision agriculture” can be defined as a science that combines the advantages
125 offered by new technologies with the mature agriculture industry. Smart farming is not a new concept, as it was
126 defined a few years ago, but the research in this area has gained momentum lately with the advent of new
127 technologies that makes the objectives of Smart farming realizable (Davis et. all, 2016). The main purpose of smart
128 farming is to create a new crop management style to increase productivity, optimize planting and harvesting and
129 reduce pollution. Such a crop management system can be a wireless sensor network (WSN) which generates data,
130 collected and stored in a database. The analyses of these data help the farmer to make the right decisions. This
131 system is also constituted of an actuator system responsible for task automatization.

132 Over the years, a lot of farm management systems have been developed, some of them offering complex solutions
133 while the others are trying to solve specific problems. Most systems come as both hardware and software solutions,
134 the great actual challenge being the development of a general solution loosely coupled with the hardware. Farm
135 Management Information Systems have evolved from simple farm recordkeeping into sophisticated and complex
136 systems to support production management. The aim of these systems is to “satisfy demands, to reduce production
137 costs, comply with agricultural standards, and maintain high product quality and safety” (Fountas et. All, 2015). As
138 mentioned above one important aspect is the existence of a reliable source of information, which can be in form of
139 an online community. Some of these solutions are described below along with the features they offer.

140 OnFarm [http://www.onfarm.com] is a web platform that offers a lot of services. All farming information is
141 disposed on a fully configurable dashboard, the user being able to add his useful widgets on it. Some of the farm

142 services are: farm visualization on the farm (provided by ESRI), automatic data gathering, weather widget that
143 combines data collected from the farm with information from weather provides, a scheduler, analyzing data and
144 their correlation to provide trends, averages and forecasts and a service for private communication. The alerting
145 system offered by the platform can warn the user on his phone via SMS and by sending emails to any account
146 configured by the user. The platform also offers a custom chart builder.

147 AgFuse [https://agfuse.com/home/about] is a social networking platform launched at the end of 2015. The platform
148 exclusively targets the farmers. Its main purpose is to create an online community where the farmers and agriculture
149 professionals can interact with each other by direct communication or by sharing information. Once a user created
150 an account he must complete his profile by specifying his domains of interests, the platform giving him suggestions
151 based on it. After that he can connect with other users, join or create groups where he can post or read useful
152 information.

153 3. System Architecture and General Implementation Details
154 In this section of the paper is described the architecture of a scalable and performant integrated web-service platform
155 that aims to facilitate the management of smart farms and creating an online community of farmers among with
156 some general implementation details. This platform is part of a more complex system described in Section 3.1. The
157 rest of the section focuses on describing the architecture of the platform, the integration with external services and
158 technologies used. In Section 3.5 is presented the database schema of the platform.

159
160 Figure 3.1 General Cloud-Based Architecture of the System (Mocanu et. all, 2015).

161 3.1 Cloud-Based Architecture for Smart Farms Management
162 In Figure 3.1 is presented a general cloud-based architecture of a system for farm management proposed in
163 (Mocanu et. all, 2015). It consists of two main components: Local Farm Controller(LFC) and Cloud Farm
164 Controller(CFC). LFC is located at the farm site and offers to the farmers the possibility to control the farm. Its
165 main purpose is to collect and store the data generated by the sensors. These data are stored in a relational database
166 having a fixed structure. To permit to the CFC to gather the stored data the LFC must be connected to the internet
167 and must allow the access to the database using a username and a password. LFC also works as a standalone
168 component. Cloud Farm Controller is in fact the component that makes the system a cloud based one. This must be
169 synchronized with Local Farm Controller, aggregates the data collected from all the farms and allows the user to

170 monitor his farm through the internet without any location restriction. In addition, it offers to the famers access to
171 many useful services, also integrating some external services like maps and weather. The platform which is the
172 subject of this paper and whose architecture is further described plays the role of a Cloud Farm Controller.
173

174 3.2 Local Farm Controller
175 A greenhouse monitoring system is very important for plants’ climate, providing all the necessary environment
176 conditions for the harmonious growth of the crop.
177 The monitoring system presented in this section is represented by a sensors’ network with wireless transmission,
178 through which measures air and soil parameter values in the greenhouse (Serrouch et. all, 2015). These values are
179 transmitted to a base radio connected to a server. The server has the option to acquire measurement data and to
180 process the data for graphical display various parameters over time.
181 The sensors’ type that makes up the system consists of air and soil sensors. The air sensors are represented by the
182 air humidity sensors, the air temperature sensors and dew point calculation, the solar radiation sensors, and the leaf
183 wetness sensors. The soil sensors are represented by the soil moisture sensors, the soil temperature sensors, and the
184 soil water content sensors. All these sensors are shown in Figure 3.2.

185

186 Figure. 3.2 The type of sensors.
187 All the sensors are connected to wireless nodes for remote transmission of measured values. One wireless node has
188 4 ports to connect the sensors. Also, the node has a dual power source: rechargeable batteries and solar cell. The
189 nodes have XMesh low-power networking protocol to provide plug-and-play network scalability and to extend the
190 range of coverage.
191 All the wireless nodes transmit data to a base-radio, which collects all the parameters’ values measured by the
192 sensors. The base-radio are connected using a USB cable to the server. The server runs a Linux-Debian distribution
193 and it has a sensor network management and data visualization software packages, named XServe and eKoView,
194 respectively. Figure 3.3 shows the type of wireless node and the base radio.

195
196 Figure. 3.3. The wireless node and the base-radio.

197 The complete architecture of the wireless sensors network is presented in the Figure 3.4. Each node transmits data
198 from sensors every 15 minutes. The software installed in the server computes values for every hour, day or month
199 for long time statistics and store the parameters’ values into a SQLite database. From this database, the users can
200 export data in .csv file format for processing by various applications or simply for back-up.

201
202 Figure. 3.4 The complete architecture of the wireless sensors network.

203 Figure 3.5 shows the eKoView web interface implemented in server, which allows users to make various settings:
204 • setup and configure the wireless network;
205 • create user-defined map to view the wireless nodes across overall network;
206 • manage configurations for user-defined chart;
207 • create trend charts of all parameters’ values across customized time spans;
208 • real-time visualization data, which gives users the control needed to manage crop health;
209 • view details of measured parameters for individual wireless node;
210 • monitor network performance and health of each node;
211 • set alert levels, run report and get notifications via SMS or email.

212
213 Fig. 3.5. The eKoView web interface.

214 It is observed that the wireless sensors network is composed by 7 nodes: the first nod (top of the map) transmits
215 data from a micro-weather station and other 6 nodes (marked from 2 to 7) transmit data from greenhouse climate.
216 All the nodes communicate their values to the base-radio (in center of the map), and then data are sent to the server.
217 The Figure 3.6 show the evolution graphs of two relevant parameters of the greenhouse climate - the ambient
218 temperature and the ambient humidity. The user can choose between viewing the data, for example in Figure 3.6
219 data is displayed over the last 11 days, between March 20th and March 30th 2017. Also, if the user places the mouse

220 on the chart, one can see the information that provide the number of node which transmits data, the port number
221 which connects the sensor, the measured values at the time, and the date of measurement.

222

223 Fig. 3.6. The ambient temperature and humidity parameter’s values.
224 3.3 Cloud Farm Controller - General Architecture
225 The general architecture of the platform consists of two main applications: the front-end application, described in
226 Section 3.3 and the back-end application described in Section 3.4. In the Figure 3.7, it is represented the two
227 applications, along with the external components with which they interact. Both applications are hosted in the Cloud
228 and they can be considered independent of each other. For now, on, for simplicity, we will call the front-end
229 application “client” and the back-end application “server”. The communication with most external services and
230 with the databases (farm local databases and cloud database) is achieved through the server while using services as
231 Google Maps and Google Places is achieved directly by the client. For sending emails the communication with the
232 email server is made using SMTP (Simple Mail Transfer Protocol) protocol.
233 For most services, the communication between the two applications it is made through the REST services (over
234 HTTP protocol) exposed by the server, the messages being formatted as JSON. For real-time notification service to
235 obtain the smallest possible delays we use STOMP messages over a web socket.
236 JSON stands for JavaScript Object Notation. It is a text format used to transfer data over the network. The
237 advantages of using JSON over XML is that it is more compact, more readable and the amount of data transferred
238 is less because of it is format: list of values (key/value pair) [http://www.json.org/].
239

240
241 Figure 3.7 General Architecture of the Platform.

242 REST stands for Representational State Transfer and is a modern architectural style for building scalable and
243 maintainable API’s for web applications. A common approach, preferred in this platform too is to use HTTP
244 protocol for communication and build an interface with CRUD (Create, Read, Update, Delete) methods for
245 manipulating domain objects based on the standard methods of the protocol (POST, GET, PUT, DELETE)
246 [http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html].
247 STOMP [https://stomp.github.io/] is a simple text-oriented messaging protocol. To configure a STOMP channel
248 between a client and a message broker (configured on the server) it is necessary to prior establish a web socket
249 connection. WebSocket (Fette, 2011) is a protocol that enables two-way communications between a client (a web
250 browser in our case) and a server. At transport layer, it user TCP, the initial handshake being made with HTTP
251 messages. After the web socket connection and the STOMP channel are established, messages from both client and
252 server can be easily sent with few bandwidth overhead and few processing power from the client.
253 3.4 Front-end Application Architecture
254 The front-end application exposes to the user a pleasant, performant and intuitive interface through which he can
255 access all the services exposed by the back-end application. This interface is responsive, so the user experience on
256 the platform is of high-quality regardless of the device used (laptop, PC, table or phone). Functional details of the
257 application are presented in Section 4, so in this section we present the structure of the application and architectural
258 decisions related to the selection of the technology stack. The choice of technologies is a very important step in the
259 development of any application because this influence the performance and the entire development stage. Thus, the
260 technologies must be carefully chosen and compatible one with each other.
261 The functionality of the front-end application is implemented in AngularJs framework (Green, 2012). We choose
262 this framework because is a MVC (Model View Controller) framework, compatible with all the browsers and it
263 provides features that help in fast development of scalable and modular applications. These features include the
264 two-way data binding mechanism (automatic synchronization between the model and the view, having an important
265 influence on increasing user experience, the user receiving instant feedback from the application) and dependency
266 injection mechanism (it helps on modularization and on component reuse). Due to the modularity provided by this
267 framework, the integration of other components is simplified. For markup and style, we use HTML5 and CSS3.
268 To easily implement the functionalities of the platform and to create a pleasant design we use some libraries
269 including:
270 Bootstrap – it is the most popular HTML, CSS and JavaScript library for building responsive web pages.
271 We use this library to make the application responsive with little effort from the developer. It also offers
272 several reusable components like modal, dropdown, tab or carousel;
273 Font Awesome – it is a CSS library that offers easy customizable (regarding the size or the color) vector
274 icons. We use this to make the interface more enjoyable and intuitive;
275 Angular Chart – it is an AngularJs module which contains a set of directives for building different types
276 of reactive charts like line chart, pie chart or bar chart;
277 UI Bootstrap – it is one of the most popular AngularJs library. It contains a large set of directives built on
278 top of Bootstrap’s markup and CSS. Thanks to the functionalities offered by this library the developing
279 effort is considerably reduced;
280 SweetAlert – it is a JavaScript library used to replace standard JavaScript alerts with ones which are easy
281 configurable and looks better. We use it to confirm some actions made in platform;
282 AngularJS ui-select – it is a configurable AngularJs directive which replaces standard selectors offering a
283 lot of functionalities including multiple selection. We use this for all selectors of the platform.
284 Angular UI Grid – it is an AngularJs directive which offers a grid with sorting, filtering, editing or
285 grouping functions.
286 As shown in Figure 3.8 the front-end application is a SPA (Single Page Application) thus, when the application is
287 accessed just one HTML page is loaded (“index.html”).

288
289 Figure 3.8 Front-end Application Functioning.

290 To navigate between different pages of the application is used a routing mechanism (implemented with an AngularJs
291 module called AngularUI Router). This mechanism makes possible the association between a virtual URL a view
292 (HTML template) and a controller (JavaScript function). When accessing a new URL, the properly view is loaded
293 into the page, in a place specified by a special HTML directive. All the functionality corresponding to that view is
294 implemented in the associated controller. The application also has configured an internationalization mechanism
295 that uses angular-translate module. It interposes in loading a new view and replaces all the labels of the page with
296 a translated version of it, taken from a JSON file. There is a JSON file with labels for every view and language in
297 part. In our case, there are two JSON files for every view (one for English, respectively one for Romanian language).
298 Being used an MVC framework, the application has a strict structure, each view interacting with the model only
299 through the controller. The controller uses many services (which are singleton, reusable components) to achieve
300 different functionalities or to communicate with the server. All the requests to the server are resolved
301 asynchronously.
302 3.5 Back-end Application Architecture
303 The back-end application is the place where the platform services are implemented. It must expose several REST
304 endpoints through which the communication with the front-end application is done and the services are accessed.
305 Another important role of this application is the gather and analysis of the data produced by the sensors located at
306 the farm. In a system with real time functionalities the performance is the most important aspect thus, prior to
307 implementation the developers must choose the technology stack that best fits their requests and offers capabilities
308 that facilitate a fast and efficient implementation of the services.
309 The technologies that we choose for implementing the back-end application are:
310 Java – it is an object-oriented programming language. It offers portability, excellent performance,
311 multithreading support, memory management, exception handling mechanism and security at the same
312 time. We choose to implement the back-end application using this programming language because of the
313 characteristics listed above and because it is well documented, there are numerous frameworks and libraries
314 developed over Java language that allowing easy integration of other technologies (JDBC – Java Database
315 Connectivity for connecting to a database, JavaMail for sending emails);
316 Spring Framework – it is a Java platform that provides support for building Java applications (Johnson,
317 2004). It is based on POJO (Plain Old Java Object) and dependency injection, these two contributing to the
318 development of loosely coupled components. Starting from the core modules of the framework a lot of
319 other projects have been developed, some of them being used by the platform including Spring MVC (it
320 imposes MVC architecture and offers several already implemented components), Spring Data JPA (it
321 extends Hibernate framework and offers more functionality with less lines of codes), Spring Security
322 (handles authentication and security aspects like securing endpoints), Spring Social (used for social login).
323 We choose to use this framework because it imposes a comprehensive structure and comes with a lot of
324 functionalities already implemented, allowing the developer to focus on application functionality.
325 Hibernate Framework – this framework offers ORM (Object/Relational Mapping) functionality and in
326 addition it implements the JPA (Java Persistence API) specification. We use this framework to work with

327 database tables in an object-oriented way and to perform database operations in a simplified manner, using
328 methods already implemented.
329 MySQL – is a RDBMS (relational database management system) owned by Oracle. We use this RDBMS
330 over others because is open-source, stable, performant and offers a lot of features.
331 The application is designed according to the MVC pattern with an n-layer approach (Figure 3.9). The view is
332 represented by the front-end application, while the controller is represented by the REST Controllers (Spring
333 components). The role of this layer is to process all the requests from the client, sends them to the model and after
334 that return the processed data to the view. The model is divided into two layers: service layer and persistence layer.
335 The service layer is responsible for handling all the requests from the controller and is the place where all the
336 business logic is implemented. All the services that resides in this layer are implemented using the singleton pattern.
337 The persistence layer oversees database operations and mapping tables into domain objects. Domain objects are
338 POJOs used by the services and are returned to the controller as DTOs (Data Transfer Objects) which are also
339 POJOs but with less fields (only those important). This has the effect of reducing network traffic. All the REST
340 endpoints are secured, the client must by authenticated and to have the necessary role for each endpoint individually.
341 For now, the platform has two roles defined: ROLE_USER and ROLE_ADMIN. To access the clear majority of
342 endpoints a logged user must have at least ROLE_USER role.
343 3.6 Database schema
344 The database schema is presented in Figure 3.10, the tables user by the services presented in this paper being
345 highlighted with a red polygon. It is observed that the entire database is built around two main tables: user and
346 farm. These two also represents the central entities of the platform. The user table stores personal information about
347 the users of the platform like username, first_name, last_name, password, email and some additional fields user by
348 the application (activated, lang_key). This table has a many-to-many relationship with authority table (this table
349 stores all application roles). A user has at least one role. The farm table stores formation about farm (name, location,
350 cui and so on). The list with available soil types and weather providers are stored in tables soil and weather service,
351 the user table having a many to one relation with the first one and a relation of type many to many with the second
352 one. The relation between user and farm tables is one to many (a user can have multiple farms).
353

354
355 Figure 3.9 Back-end Application Architecture.

356 The blog service uses the blog and blog_comment tables for storing blog articles respectively article
357 comments. Both tables have a foreign key to the user table, representing the author. Notifications history is kept in
358 the notification table. The method used in implementing the statistics service involve the use of multiple tables
359 (remote_data, remote_sensor, remote_data_value, hour_statistics, month_statistics, day_statistics.
360 4. Platform Description and Service Specification
361 In this section, it is presented an overview of the platform together with the specification of the implemented
362 services. For every service, it is specified a functional description, an input, output description, the integration with
363 external services, the moment of occurrence and how critical cases are handled, and the key aspects of its
364 implementation.
365 4.1 Platform Overview
366 The platform has two perspectives: one for logged users and one for visitors. When a user access the platform and
367 he is not logged he has access only to a presentation page. It is a page with a modern design where the user can
368 view information about the platform and services offer by this (about section), a contact section and a map with
369 which they can get an idea about the localization of the registered farm (the farms are represented on the map with
370 an image no other information, even the name is not displayed). From this page the user can navigate only to login
371 (where he can log in into the platform using an existing account or using social login) and register page (where he
372 can create a new account). The only service that can be accessed when a user is not logged is the registration service.
373 When the user is logged, the platform looks like a dashboard. The main page contains a map which is resembling
374 with the one described earlier, with the difference that the farm names are displayed and the farms owned by the
375 current user are represented with a green picture. By clicking on a farm the user is redirected to the farm visualization
376 page of the clicked farm. In the left side of the dashboard the user can see its profile picture (by clicking on it he
377 can access his profile page) along with a menu where he can access all the services offered by the platform or can
378 go to the view page of any of his registered farms. On its profile page the user can review his activity on the platform
379 (view registered farms, forum interventions, blog posts). When accessing other user’s profile there is a widget that
380 allows sending a personal message to that user. When watching others farms, the number of details displayed is in
381 accordance to the privacy options selected while adding that farm

382
383 Figure 3.10 Database Structure.
384 In the top navigation bar (Figure 4.1), there is a search input where the user can search for farms, users and groups.
385 There can be also found a new message indicator and a notification indicator. Clicking on the notifications indicator
386 opens a dropdown menu with all the new notifications, while clicking on the new message indicator opens the
387 messaging inbox. Also from the top bar the platform language can be changed. After authentication, the default
388 language is the one chosen by the user while creating the account. For the moment, the available options are:
389 Română and English.

390
391 Figure 4.1 Top bar.
392

393 4.2 Identity Management Service
394 To gain access to other services offered by the platform, the user must have an active account. From the home page
395 of the platform the user can choose to log in into the application, if he already has an account, or he can navigate to
396 the registration page if he does not have one. From the log in page the users can choose to reset their password by
397 filling a valid email and following the instructions. Further on we are going on to detail the registration process.

398
399 Figure 4.2 User Registration Workflow.

400 User registration service is a public service that allows users to register into the platform. The registration flow is
401 represented in Figure 4.2 above. To register into the platform, the users must fill in and submit a form from the
402 registration page. They also have the possibility to use a social sign-up, choosing an identity provider from the
403 available ones (Google, Facebook). An identity provider is an entity able to provider user authentication and to offer
404 to the requesting service the necessary data about the authenticated user. For the first option if the data filled in is
405 valid, an activation email is sent. The account is activated only after the user follows the link sent in the email.
406 For the second choice, the process follows the provider’s protocol of authentication and the user must log in to the
407 provider’s application and allow the platform to use his information. In this case an account is automatically created
408 using the data retrieved from the identity provider. The account is also active.
409 For usual registration, the information that must be filled in is:
410 Personal data: first name, last name, email address (used for sending activation email and other platform
411 specific emails);
412 Information used by the platform: username, password (both used for authentication) and preferred
413 language (the default language used after the authentication);
414 The data is stored as JSON and is sent to the server when the form is submitted. After validation, the server responds
415 with a success or a failure message which is also JSON formatted. In the first case the data is stored in a database
416 and an activation email is sent.

417 For social sign-up, the user interacts only with the identity provider where he must authenticate with username/email
418 and password. After the authorization process the platform communicates directly with the server and creates an
419 account based on the information received from the server. Next, a response is sent to inform the user about the
420 account registration and a confirmation email.
421 This service integrates with two external services, one for each identity provider. Both are restful services used for
422 verifying the user’s identity and obtain basic profile information. Each is a proprietary implementation of OpenID
423 2.0 that in the case of Google is called Google-OpenID, and in the case of Facebook is called Facebook connect.
424 For an account to be created the data filled in the form must pass field validations. These are:
425 Username – required, unique field and must have at most 50 characters;
426 First name, last name – required and must have at least 2 characters and at most 50 characters;
427 Email Address – must comply email pattern and have at most 50 characters;
428 Password – required and must have between 5 and 50 characters. For safety reasons the user must confirm
429 the password and in case they do not match validation fails.
430 Preferred language – a string in a predefined list (Română, English);
431 Validations are done both on the client and on the server-side. If client-side validation does not pass, the submit
432 button of the form is disabled and the wrong field is indicated. If server-side validation fails, the server replies with
433 a message indicating where the problem is to be found.
434 Regarding social sign-up, the creation of two different accounts with the same username/email is not permitted.
435 Also, the refusal of the user to allow the platform to use their profile information during authorization process
436 prevents the creation of the account.
437 Concerning forgot password functionality, the email address filled in by the user must belong to an active account,
438 otherwise the server replies with an error message.
439 The user registration service is a REST service. The new account details are sent in the HTTP POST method’s body
440 and after validation the server responds with 201(CREATED) or 400(BAD_REQUEST) code along with a
441 representative message. For security reasons the password is stored as a hash. An activation key (a random numeric
442 string of 20 characters) is generated and emailed afterward to the user as part of the activation URL. When the URL
443 is clicked, the account is activated and the activation key is removed from the database. A similar process occurs
444 also in the case of forgot password functionality. The authority associated to a newly created account is
445 ROLE_USER, as explained previously.
446 4.3 Farm Management Service
447 Farm registration service allows farmers to register their personal farms on the platform and it can be accessed by
448 anyone who has an active account. The farm is the main entity of the platform, therefore the number of information
449 that must be filled in is high.
450 For simplicity reasons, the form for adding a farm into the platform is divided into a series of steps (more
451 specifically, 3) each having its role. A workflow of this service is presented in Figure 4.3.

452
453 Figure 4.3 Farm Registration Workflow.

454 The first step (Figure 4.4) is made up of a series of general fields that the user should fill in. After this step, has
455 been followed, the user can go further on to the second step. The fields are:
456 Farm name;
457 Soil class and soil type. The user has the possibility to choose from lists containing all the soil classes and
458 types found in Romania. Selecting a soil class reduces the number of available soil types only to those
459 which belong to the selected class. Also, selecting directly a soil type automatically fills the soil class. When
460 hovering over a selected soil type a description about the spread of that soil type is displayed. This function
461 helps the farmer to choose the soil correctly even if he does not know exactly the type or if he knows only
462 the location of the farm;
463 Farm surface, which can be inserted in four units: square meter, acre, hectare or are;

464
465 Figure 4.4 Register farm - first step.
466 In the second step (Figure 4.5), the user must provide advanced data about the farm. He must specify farm
467 localization information. To do that, the farmer should draw the farm shape on the map by clicking on different
468 locations. The selected points are automatically grouped in a polygon which can be adjusted by the user. He can
469 also use the undo function that removes last added point or the clear function that removes all the points. For easy
470 navigation on the map the farmers can type the name of a place on a text input with type ahead capabilities and the
471 map focuses on it. Within this step the farmers must also choose at least one external weather provider that is used
472 by the weather service to provide weather forecast. There are two providers available (OpenWeatherMap and
473 Forecast.io). This step presupposes also the completion of required data for connecting to the farm local database.
474 These are: IP, port, username and password and they are used by the statistics service. If they are not filled in the
475 user cannot have access to any statistics. From this second step, it is possible to go back to the first step or to go
476 further on to the third step.

477
478 Figure 4.5 Register farm – second step.

479 In the third step (Figure 4.6), the user can review the data completed before and choose data visibility (public or
480 private) for each of the previous steps. According to his choice the data is visible or not for other users. He can go
481 back to modify the input or he can proceed to save farm instance. After successfully adding a farm, the user can
482 view it whenever he wishes to, to edit any of the parameters and even to remove it from the system.

483
484 Figure 4.6 Register farm - third step.

485 The input consists of the data filled in the form by the user:
486 Step 1: name, soil type, surface;
487 Step 2: cui, farm location, weather services, IP, port, username, password;
488 Step 3: data visibility;
489 The location is stored as a series of geospatial coordinates (pairs of latitude and longitude). Input data is formatted
490 as JSON and is sent to the server which validates it. If the input is valid it is saved on a database. Server response
491 is also JSON formatted and contains a success or a failure message. In second case the user must review and modify
492 the wrong input.
493 This service uses two external services from Google: Google Maps and Google Places. Google Maps is a web-
494 based service that provides detailed information about regions and sites around the world. It offers the possibility
495 to specify farm location dynamically in a user-friendly interface. The user can draw the farm shape on the map.
496 Google Places is a web-based service able to return place predictions based on the user’s partial input. It is used to
497 search for a place and focus the map on it.
498 Critical cases can occur when data does not meet field validations. These are the input validations:
499 name - required and unique field;

500 soil type - soil type defined in database;
501 surface - numeric field;
502 Farm location – list of geospatial points, required field;
503 Weather service - a string in a predefined list (OpenWeatherMap, Forecast.io);
504 Cui – numeric string within a specific format; required field;
505 IP – must comply with the IP format;
506 Port – numeric value;
507 Validations are done both on client and on server-side. If client-side validation fails, the save button is disabled and
508 a message is displayed under invalid input fields. Each critical case is treated by the server which replies with
509 messages that help the user to correct the mistakes.
510 The farm is drawn on the map using the API from Google Maps. It is based on an array of objects, every object
511 representing a point on a map, having two properties (latitude and longitude). When the user clicks on the map the
512 array is updated by adding a new point having the coordinates of location which has been clicked. The undo and
513 clear functionalities are implemented by removing the last inserted respectively all the points of the array. After
514 every update the map is redrawn for changes to be visible. Before submitting the form, the array of points is
515 translated to a string with the following form: “latitude1, longitude1; latitude2, longitude2; …; latitudeN,
516 longitudeN”. This form helps in storing the location of the farm with ease.
517 4.4 Weather Service
518 Weather service is a service through which the user can view various information regarding weather and outside
519 conditions about each farm individually, based on its location. A workflow diagram of this service is presented in
520 Figure 4.7.
521 While adding a new farm the user must specify at least one weather service. For safety reasons, he can choose to
522 use multiple services and compare the results. For each selected service the platform displays in a widget the basic
523 weather information (temperature, rainfall, humidity and information about wind). For more detailed information
524 and forecast for the following week the user must click on the “More details” button.
525 Regarding weather forecast the information taken from the weather provider and displayed by the platform are:
526 minimum temperature, maximum temperature, humidity, precipitation intensity, precipitation probability,
527 atmospheric pressure, wind speed together with a short description. It is possible that in time more weather providers
528 will be available or if simply the user wants to change his initial choice the platform gives him the possibility to
529 modify the selected providers.
530 The units used are:
531 • Celsius degrees (°C) for temperature;
532 • meter/sec (m/s) for wind speed;
533 • hectopascal (hPa) for atmospheric pressure;
534 • millimeter/hour (mm/h) for precipitation intensity;

535
536 Figure 4.7 Weather Service Workflow.
537

538 The input is represented by the geospatial coordinates of a point (the middle of the polygon representing the farm).
539 Regardless of the weather provider, longitude and latitude are sent via request parameters or are directly included
540 in request URL. Every service requires a set of options to be specified but this is done invisibly to the user. The
541 output is represented by a JSON which contains requested information or an error message in case of wrong
542 formatted request. Example piece of result from OpenWeatherMap:
543
544 {...,"main": {
545 "temp": 8.46,
546 "pressure": 1024,
547 "humidity": 61,
548 "temp_min": 7,
549 "temp_max": 10
550 },...}
551 The service integrates with two weather services. Each is a restful service which exposes a public API.
552 OpenWeatherMap offers access to current weather for over 200000 places aggregating data from over 50000
553 weather stations. 5-day forecast includes data every 3 hours. For extended forecast, it includes data daily. It can
554 provide hourly data about weather history for a period equal to the maximum of the previous month. Location can
555 be specified by city name, by city ID or by geographical coordinates (used by the platform).
556 Forecast.io can be used to get current conditions, minute-by-minute forecasts up to 1 hour, hour-by-hour forecasts
557 up to 48 hours and day-by-day forecasts up to 7 days. It can provide historical data up to 60 previous years or future
558 data up to 10 years. Location can be specified by longitude and latitude.
559 Critical cases can occur when the external service is not available or when the request is timed out. When this
560 happens, the weather widget contains an error message.
561 Another error may occur when the request is not well formatted, but this is to be avoided programmatically. For
562 situations in which the API is changed the error is treated as described above.
563 Both services have limitations in terms of number of calls:
564 • OpenWeatherMap – no more than 60 calls per minute;
565 • Forecast.io – no more than 1000 calls per day;
566 If the limits are exceeded the services are no longer available.

567 To reduce processing at the front-end application level the data from the weather providers are retrieved through
568 the back-end application. Listing 4.1 presents the method which retrieve and parses the data from an external
569 service. Knowing the weather service and the farm (needed to compute the point for which the data are requested),
570 on line 4 a generic method that returns a well formatted URI is called. To do that the method should receive three
571 parameters: the farm, the weather service and the type of information that should be retrieved (BASIC or
572 ADVANCED), the last one being important for reducing the quantity of data requested from the weather server.
573 For example, for OpenWeatherMap service, a correct URI should look like this:
574 http://api.openweathermap.org/data/2.5/find?lat=44.88&lon=25.69&units=metric
575 &cnt=1&appid=f868f58d6d10ef036962e7aa672b946d, where “lat” and “lon”
576 parameters are the latitude respectively the longitude of the middle of the
577 farm and the “appid” is an application identifier previously requested from
578 the API. It is a required parameter, always the same for each weather service
579 individually.

580

1 public BasicWeatherInfoDTO getBasicWeather(Long farmId, Long
weatherServiceId) {
2 WeatherService weatherService =
weatherServiceRepository.findOne(weatherServiceId);
3 Farm farm = farmRepository.findOne(farmId);
4 URI uri = WeatherUtil.buildURL(weatherService, farm,
WeatherInformationType.BASIC);
5 RestTemplate restTemplate = new RestTemplate();
6 String response = restTemplate.getForObject(uri, String.class);
7 JsonParser jsonParser = new JacksonJsonParser();
8 Map<String, Object> json = jsonParser.parseMap(response);
9 BasicWeatherInfoDTO dto = new BasicWeatherInfoDTO(json,
WeatherServiceEnum.WeatherServiceFromName(weatherService.getName()));
10 return dto;
11 }

581 Listing 4.1 Retrieve Basic Weather Information from External Weather Service.

582 The URI is used for the call to external REST service (using Spring’s RestTemplate which is a class that helps
583 consuming RESTful Web Service) the response of which is a string. To get useful data, the response must be parsed
584 as JSON; this is done on line 8, using Jackson JSON library.
585 To standardize the information presented to the user, regardless of the used service and the structure of the parsed
586 JSON the retrieved data are processed using the algorithm presented in Appendix 1. The processing is done into the
587 constructor of the DTO class (BasicWeatherInfoDTO for basic weather info or AdvancedWeatherInfoDTO for
588 advanced weather info).
589 The algorithm to compute the middle of a farm has as input the location of the farm (an array of points, each with
590 a latitude and a longitude property). The latitude of the middle point is determined as the arithmetic mean of the
591 lowest and the highest latitude of the input points while his longitude is the arithmetic mean of the lowest and the
592 highest longitude of the input points.
593 4.5 Statistics Service
594 Statistics service is a service that allows the farmers to view the data generated by the sensors located at the farm
595 site in a more user friendly manner, in the form of charts that aggregate data from a longer period.

596
597 Figure 4.8 Statistics Service Workflow.

598 The service can be accessed from the farm view page by clicking on the statistics tab as shown in the flow diagram
599 in Figure 4.8. The statistics are particular to each farm and for this service to be available the user must provide the
600 data necessary to connect to the farm database while adding a farm (IP, port, username and password). Having these
601 data, the back-end application can extract and process raw data generated by the sensors.
602 The list with available parameters is automatically generated based on the data found in the database of the
603 farm. A complete list with parameters is available in Appendix 2.
604 The user has access to three types of statistics:
605 • Daily statistics – in order to view this type of statistics the user must select a parameter and a day and
606 then click the load button. The day is selected from a calendar widget. A graph is drawn with a value
607 for every hour of the day. The statistics are available even for the current day but only for the past
608 hours.
609 • Monthly statistics – in addition to the parameter, to view this type of statistics the user must select a
610 year and a month. The graph is drawn with a value for every day of the month. This type of statistics is
611 also available before the end of the month.
612 • Yearly statistics – as with the other types of statistics the user must provide additional information, in
613 this case the year for which he wants to see statistics. This type of statistics is available anytime, the
614 graph being generated with the data from available months.
615 In Figure 4.9 it is an example of a graphical visualization of a daily statistic for temperature parameter.
616 The input for this service is represented by the options selected by the user on the page. They are sent to the server
617 as parameters to the HTTP GET method. Relying on them the server-side application extracts necessary data from
618 the database and responds with a JSON containing an array of values used for the graph.
619 A critical case occurs when the necessary data for the statistics are not available, for example when the user requires
620 to view statistics for a period before the date of the registration of the farm into the platform. In such situations, a
621 message is displayed informing the user about what was happened. While filling in the form for request statistics
622 the user must select a value for every field. If any of the fields is not filled in the load button is disabled.
623 Because the response time of the platform is a critical attribute for performance measurement we propose for the
624 statistics service an approach based on asynchronous evaluation of the data received from the farm and preparation
625 of the statistics in advance. Therefore, the user does not have to wait for the statistics to be generated because these
626 are already generated. This approach has a few advantages especially for user experience but also some
627 disadvantages because this solution cannot scale with increasing number of farms and also the space for storing
628 such data is greater.

629
630 Figure 4.9 Statistics example.

631 This functionality is implemented using three scheduled tasks (as shown in Figure 4.10) each with a different role:
632 • The first one is responsible for generating useful data for daily statistics. It runs once an hour, processes
633 raw data collected from the farms and inserts into the “hour_statistic” table one row for each farm
634 representing the mean value of the data generated in the last hour. The database table with row data is
635 populated by another job which runs once a minute, reads the data from the remote database, process it
636 and writes the results into the database of the platform
637 • The second one runs once a day and has the role to generate data for monthly statistics. The input for
638 this task is represented by the values generated by the first task. This task also produces one row for
639 every farm every time it runs.
640 • The third one is like the second task except that this one runs once a month and produce data used for
641 yearly statistics.
642 Next we detail the implementation of a scheduled task. It is implemented in accordance with the Replicated Workers
643 model. This model is based on a few workers who can execute any job in work pool. A work pool is a collection of
644 tasks waiting to be executed. Any worker executes a job and once he finishes he take another job from the work
645 pool until the task is finished. A task is considered done when all the workers finished their job and the work pool
646 is empty.
647 Listing 4.2 presents the code for a scheduled task. This is a thread that creates a work pool of jobs each time it runs
648 (line 2). The type of job inserted into the pool as well as the running frequency is determined by the type of task.
649 The work pool is populated with a job for every farm (as presented in line 4 to line 6). Once the work pool generation
650 is completed it creates several NT worker threads and it starts them (line 7 to line 13). We choose NT to be 4 but if
651 the application does not scale with increasing number of farms it can be increased easily. The workers take jobs
652 from work pool in a round robin manner and execute them. When all the workers finish their jobs and the thread
653 pool is empty, the scheduled task ends too.

654

1 public void run() {
2 WorkPool workPool = new WorkPool(NT);
3 List<Farm> farms =
farmRepository.findAll();
4 for (Farm farm: farms) {
5 workPool.putWork(new
CreateStatisticsJob(farm, statisticsType, …));
6 }
7 Worker[] workers = new Worker[NT];
8 for (int i = 0; i < NT; i++){
9 workers[i] = new Worker(workPool);
10 }
11 for (int i = 0; i < NT; i++){
12 workers[i].start();
13 }
14 for (int i = 0;i < NT; i++){
15 try {
16 workers[i].join();
17 } catch (Exception e){
18 e.printStackTrace();
19 }
20 }
21 }

655 Listing 4.2 Scheduled Task Implementation

656 4.6 Notifications service
657 Notifications service is a service through which the platform can notify users about the occurrence of various events
658 generated by the other services of the platform as specified in Figure 4.11.
659 The input is represented by an object that contains the following fields:
660 • User – the user who should receive the notification;
661 • Title – the title of the notification or the email subject
662 • Message – the content of the notification or the message that is sent in the email body;
663 • Type – the type of notification;
664 • Severity – the severity of the notification. Can take one of the following values: success, info, warning,
665 error;
666 • Url – the redirecting location;
667 • isRead – a flag to check if the notification is seen by the user;
668 The output is represented by the notification sent to the user if there is no error.
669 The service integrates with more services. They can be divided in two categories: those which generate requests for
670 sending notifications and those which handle these requests. The first category includes: the alert service (generates
671 critical alerts), the user management service (require sending emails when a new account is created), the store
672 service, the forum service (sends internal notifications to users when someone posts in a discussion thread in which
673 they subscribe) and the blog service (the user is notified when someone comments on his blog post). They send
674 requests formatted as described above. To the second category belongs the email server, used by the service to send
675 emails and an AngularJs service which handles the platform notifications.
676 Regarding the input only user and severity fields are required while the type, url and isRead fields are taking default
677 valued if not specified. The user must be an active user on the platform. The message and title fields are strings. If
678 these validations are not satisfied an error is thrown. Another critical situation is when the service able to send
679 emails is down. In this situation administrator intervention is required.
680 The emails are sent using Spring Framework’s implementation of JavaMail, the content of the email being
681 represented by HTML templates written in Thymeleaf.
682 The mechanism for sending notifications is implemented as a generic service that takes as parameter an object of
683 the type notification and according to the values of the fields it takes different actions. This service is in charge of

684 validation and generation of unspecified fields. If severity, which is a required field, has the value of error then in
685 addition to a platform notification, an email is sent too.
686 To simplify using this service from other services, we choose to create a notification object using the builder pattern.
687 Using this creational pattern, the need of writing more constructors is avoided and the user of the service can simply
688 provide only those parameters he considers important, the rest of the business logic being relegated to the service.
689

690
691 Figure 4.11 Notification Service workflow.

692
693 To notify the user through the web interface of the platform we propose a solution based on the WebSocket and
694 STOMP protocol. When a user logs into the platform a WebSocket connection is established between the web
695 browser of the user and the web server through the WebSocket endpoint exposed by the back-end application.
696 Over the established WebSocket connection, the STOMP client subscribes to a STOMP message broker through a
697 channel. The message broker is available at an address built based on the username of the user (Figure 4.12). Thus,
698 it is guaranteed that the channel created is unique therefore, only the right user receives the notification.

699
700 Figure 4.12 Notification Service Functioning.

701 Over the established WebSocket connection, the STOMP client subscribes to a STOMP message broker through a
702 channel. The message broker is available at an address built based on the username of the user (Figure 4.12). Thus,
703 it is guaranteed that the channel created is unique therefore, only the right user receives the notification.

704 Once the STOMP connection is established the user receives all unseen notification beginning with the last login
705 and during the usage of the platform all the new notifications are sent in real time. There is a service in front-end
706 application which receives all the notifications and generates different types of toast notifications based on severity
707 field.
708 The biggest advantage of using these technologies is that it offers the possibility of implementing a mechanism of
709 real time push notification over a bidirectional channel with a few overhead for the web browser because it does
710 not have to request new notifications.
711 4.7 Blog service
712 Blog service is part of the social networking aspect of the platform. It allows any user to write complex articles
713 about subjects that may be of interest to other users and to read the articles written by others. Its workflow diagram
714 is presented in Figure 4.13.

715
716 Figure 4.13 Blog Service Workflow.

717 The blog can be accessed from the main menu, the first page consisting of a list with all the articles (title and a short
718 description) in descending order by the date of their creation. From this page the user can choose to read or write
719 an article. Clicking on an article opens a new page where the user can read the content of the article or write
720 comments. There are some statistics available including the number of comments and the number of views. Clicking
721 on the “Write new article” button opens a page where the user must write a title, a short description and the content
722 of the article. By submitting the form, the article is saved.
723 The content of the article is written with the help of a widget which allows the text to be customized. Customization
724 options are the following:
725 • bold, italic, underline, superscript, subscript, strikethrough text;
726 • font family – more options, including “Arial”, “Helvetica”, “Tahoma”, “Verdana”, “Times New
727 Roman”;
728 • font size – the range of 8-36;
729 • line height – the range of 1.0 to 3.0;
730 • paragraph style;
731 • background and foreground color;
732 The elements that can be inserted are: lists (unordered, ordered), tables, links and pictures. It also offers functions
733 such as undo and redo.
734 When a new article is written, the input expected from the user is represented by three fields: title, description and
735 content. The first two are plain texts, while the last one is a string the content of which represents the HTML code
736 generated by the widget described above. Those fields are passed to the server as a JSON where the article is
737 preserved in the database. The output is represented by a success or failure message coming from the server also as
738 a JSON.
739 Regarding the main page of the blog the output received from the server is a JSON with a list of objects having
740 several fields: title, description, createdDate – the date on which the article was created, numberOfViews – the total

741 number of views, numberOfComments – the total number of comments, user – the name of the user who wrote the
742 article. For the visualization page of the article the output is an object having the same fields as the ones named
743 above while also incorporating the content field – a string with HTML code.
744 When posting an article, all fields are required. Validations are done both on the client side (the submitting button
745 of the form is disabled if one or more fields are not completed) and on the server side (if one of the fields is missing
746 the server responds with an error message specifying what the error is). When posting a comment, the situation is
747 the same. The content of the comment should not be null. When there are no posts available an informative message
748 is displayed.
749 Depending on the database settings, when posting an article containing uploaded images an error may occur when
750 the total size of the article is bigger than the maximum size allowed by the database. In such situations, the user is
751 announced through an error message.
752 In order to offer the text editing features for writing the content of the article we used “Summernote”. This is a
753 popular JavaScript library that offers a simple and easy configurable text editor compatible with AngularJs
754 framework. The library formats the content as HTML code and this is stored in the database as a string in a
755 LONGTEXT field. MySQL engine limits the size of such a field to a maximum of 5Gb but more often the maximum
756 size for a transaction is much smaller. We set this limit to 10Mb as we considered that it is enough for any blog
757 post. If this size is exceeded an error is thrown.
758 5. Performance analysis
759 In this section, we present a performance analysis of the platform by measuring the load time from different places
760 around the world specifying critical points, along with the response time of the platform services.
761 5.1 The Performance of the Platform
762 Loading time is a very important aspect for measuring the performance of a web application. Together with the
763 design, this influences a lot the user experience on the application. Several research results made by Google
764 specialists show that a user leaves the application if the loading time is over 2 - 2.5 seconds. Besides advantages in
765 terms of UX (User Experience), there are also advantages in terms of SEO (Search Engine Optimization), the
766 loading time being recently added among many criteria used by Google (the most popular search engine) for
767 computing the Page Rank.
768 The specifications of the server and the distance between the testing location and the server highly influences the
769 performance of the application. For the next testing scenarios, the platform is deployed on a Tomcat 8 server located
770 in Europe. The tests are made with the help of WebPageTest [http://www.webpagetest.org]. This is an online tool
771 that allows complex load testing of web applications from different locations around the world providing the results
772 in an easy to interpret manner.
773 Being a Single Page Application designed as presented in Chapter 2, all the static resources (HTML files, JavaScript
774 files and CSS files) are loaded on first access of the platform, thus the worst-case scenario is the testing of the home
775 page. Table 5.1 presents the test results from different locations using a Google Chrome browser over a cable
776 connection (5/1 Mbps 28ms RTT).
777 Table 5.1. Load Time Test Results.

Location Load Time User Time First Byte Start Render
London, UK 2.533s 1.878s 0.246s 1.390s

New York, USA 2.074s 1.717s 0.338s -
Sao Paulo, Brazil 5.025s 3.728s 0.945s 1.986s

Johannesburg, South Africa 5.073s 4.800s 1.614s 2.540s
Tokyo, Japan 5.431s 3.831s 1.046s 1.481s

Sydney, Australia 2.812s 1.864s 1.359s 1.496s
778

779 The load time column represents the total time spent by the browser to load and render the page, while the user time
780 represents the time after which the user can use the application. From the user perspective, this time might seem
781 shorter because the CSS files are loaded before the JavaScript files and the application seems to be ready to the user
782 before it is. The values obtained are lower than the limit of 2 to 2.5 seconds for locations in North America or in

783 Europe. The load time of the other pages of the platform is considerably lower because the only static files loaded
784 are: the HTML template, a JSON file containing the translate labels and the images used in that page. For very
785 distant locations as South Africa or Japan the loading time for the first page are not very satisfactory, but once the
786 application is loaded for the first time the other pages can be accessed in a time lower than 2.5 seconds given that
787 the first Byte is received after 1 – 1.5 seconds, thus the application is still offering good performances.
788 In Figure 5.1 a distribution of the number of HTTP requests on file types is presented. Most files fetched from the
789 server are JavaScript files (81.2%) followed by the number of files of CSS type (10.1%), while the HTML files
790 represents just 5.8%.

791
HTML JS CSS Other

792 Figure 5.1 Requests Diagram.

793 Regarding the dimension of the fetched files (presented in Figure 5.2), the order is maintained, the JavaScript files
794 representing 86.5% of the total size, CSS files 12.4% while HTML pages represents just 1%.

795
HTML JS CSS Other

796 Figure 5.2 Bytes Diagram.

797 5.2 The Performance of the Platform Services
798 The response time of the services of the platform is also very important, especially for those which are dealing with
799 critical tasks or data processing like Statistics Service or Notification Service.
800 For the tests described in this section we used a computer that has an Intel® CoreTM i7 – 3610QM CPU @
801 2.30GHz, 8GB DDR3 RAM and a Windows 10 Pro operating system. The application is deployed on tomcat-
802 embed-core 8.0.30. The application is accessed using Google Chrome web browser. The total time of a request is
803 represented by the sum of the connection setup time and the Request/Response time represented by the time spent
804 on the network plus the waiting time. In Table 5.2 only the waiting time is represented, it is the time spent by the
805 server in processing a request. For higher accuracy, a set of 4 tests were made.
806 Table 5.2. Services Response Time Test Results.

Action Test1 Test2 Test3 Test4 Average
User registration 300.85ms 264.61ms 161.47ms 265.05ms 247.99ms

Farm registration 185.68ms 92.64ms 67.72ms 94.56ms 110.15ms
OpenWeatherMap - get basic

weather information
123.70ms 128.77ms 127.05ms 124.40ms 125.98ms

OpenWeatherMap – get
advanced weather information

215.81ms 231.25ms 233.66ms 234.26ms 228.75ms

Forecast.io - get basic weather
information

449.39ms 529.63ms 451.81ms 529.69ms 490.13ms

Forecast.io – get advanced
weather information

453.70ms 463.31ms 480.97ms 508.86ms 476.71ms

Get daily statistics 13.75ms 12.94ms 12.72ms 12.92ms 13.08ms
Get monthly statistics 12.75ms 13.92ms 11.76ms 12.39ms 12.71ms

Get yearly statistics 11.17ms 9.80ms 9.75ms 9.43ms 10.04ms
Post blog article (1Mb content) 214.26ms 206.72ms 200.12ms 179.17ms 200.06ms

Receive notification 28ms 29ms 21ms 22ms 25ms
807

808 For user registration, the measured time includes the time spent for sending the confirmation email. For weather
809 service the response time can vary depending on the response time of the weather provider. Considering the
810 implementation of the statistics service presented we have succeeded in obtaining very little response times, the
811 greatest amount of data processing being made asynchronously, the user does not have to wait for the statistics to
812 be computed when he requires them.
813 For notification service the measured time represents the time interval between the occurrence of an event and the
814 moment when the user is notified in platform. The results are obtained due to the chosen implementation (using
815 WebSocket protocol) and they can be influenced by the physical distance between the server and the client (the
816 time spent on the network).
817 6. Conclusions and future work
818 In this paper, we have presented a web platform the main purpose of which is to improve agriculture by providing
819 the farmers with a way to monitor their farm from a distance with a single requirement: a connection to the internet.
820 Another goal was to make a platform which facilitates the creation of a strong online community of farmers and
821 agriculture experts (a social network for farmers). All the information presented in this paper shows that these
822 objectives were accomplished.
823 Before describing the architecture of the platform, we presented the architecture of the system which contains the
824 platform. The platform is constituted of two main applications, decoupled from one another. We propose an
825 architecture along with the technologies used and a motivation for choosing them, for each of these two applications
826 and we also discuss the communication between them.
827 Because the main components of a platform are the services that it offers to the users, we rendered a detailed
828 presentation of each one of them. A functional description and some important implementation details was
829 presented. The user management service allows a user to register in the platform. Several registration manners have
830 been implemented. The users along with their farms are the main entities of the platform, latter being managed by
831 other services, the farm management service which allows a user to register a farm in a platform and specify its
832 location on a map. The weather service is another service available on the platform. It offers precise 7-days forecast
833 for each farm. The statistics service is very important; it is the one which connects the user with his farm offering
834 him real time statistics about monitored parameters. We implemented it in a manner that guarantees small delays.
835 When an event that is of interest for the user occurs, he is notified through the notification service (platform
836 notification and/or email). One of the services that categorizes the platform as a social network is the blog service.
837 It can be used by the users to share their thoughts by posting articles on a blog.
838 We analyzed the performance of the platform through several tests which reveal the load times of the platform and
839 the response times of the services. We also explained the results.
840 In the future, we want to extend the platform functionality by adding a couple of new functionalities or
841 improvements including:

842 • adding to the notifications service the capability of sending SMSs. This is a very important aspect because
843 important events could take place when the user does not use the platform, that is, when he is not connected
844 to the internet. This may be the only way to send alerts to the user;
845 • adding a scheduler that allows the user to plan his activities better. He will be notified when a planned event
846 is approaching;
847 • increasing the number of possibilities to register into the platform by adding more external identity
848 providers like LinkedIn or Twitter. This simplifies the process of registration for users who do not have a
849 Facebook or Google account but who still want to use the social registration feature;
850 • increase the number of available statistics for the statistics service;
851 • allowing a farmer to add contributors to a farm he owns;
852 • finally, improving the performance of the actual services and reducing the storage used by the platform and
853 its loading time by partially loading JavaScript files and load libraries from CDN (Content Delivery
854 Network) sources.

855 7. Acknowledgment
856 The research presented in this paper is supported by projects: clue-Farm - Information system based on cloud
857 services accessible through mobile devices, to increase product quality and business development farms - PN-II-
858 PT-PCCA-2013-4-0870 and DataWay - Real-time Data Processing Platform for Smart Cities: Making sense of Big
859 Data - PN-II-RU-TE-2014-4-2731.
860 We would like to thank the reviewers for their time and expertise, constructive comments and valuable insight.

861 8. REFERENCES
862 AgFuse, 2016< https://agfuse.com/home/about>.
863 Alexandratos, N. and Bruinsma, J., 2012. World agriculture towards 2030/2050: the 2012 revision (No. 12-03, p.
864 4). Rome, FAO: ESA Working paper.
865 Ashton, K., 2009. That ‘internet of things’ thing. RFiD Journal, 22(7), pp.97-114.
866 Bojan, V.C., Raducu, I.G., Pop, F., Mocanu, M. and Cristea, V., 2015, September. Cloud-based service for time
867 series analysis and visualisation in Farm Management System. In Intelligent Computer Communication and
868 Processing (ICCP), 2015 IEEE International Conference on (pp. 425-432). IEEE.
869 Davis, G., Casady, W.W. and Massey, R.E., 1998. Precision agriculture: An introduction. Extension publications
870 (MU).
871 Fette, I., 2011. The websocket protocol.
872 Fountas, S., Carli, G., Sørensen, C.G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M.,
873 Wiebensohn, J. and Tisserye, B., 2015. Farm management information systems: Current situation and future
874 perspectives. Computers and Electronics in Agriculture, 115, pp.40-50.
875 Green, B. and Seshadri, S., 2013. AngularJS. " O'Reilly Media, Inc.".
876 Johnson, R., Hoeller, J., Donald, K., Sampaleanu, C., Harrop, R., Risberg, T., Arendsen, A., Davison, D.,
877 Kopylenko, D., Pollack, M. and Templier, T., 2004. The spring framework–reference documentation. Interface, 21.
878 JSON, 2016< http://www.json.org/>.
879 Kruize, J.W., Wolfert, J., Scholten, H., Verdouw, C.N., Kassahun, A. and Beulens, A.J., 2016. A reference
880 architecture for Farm Software Ecosystems. Computers and Electronics in Agriculture, 125, pp.12-28.
881 Liao, M.S., Chen, S.F., Chou, C.Y., Chen, H.Y., Yeh, S.H., Chang, Y.C. and Jiang, J.A., 2017. On precisely relating
882 the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system.
883 Computers and Electronics in Agriculture, 136, pp.125-139.
884 Mocanu, M., Cristea, V., Negru, C., Pop, F., Ciobanu, V. and Dobre, C., 2015, May. Cloud-based architecture for
885 farm management. In Control Systems and Computer Science (CSCS), 2015 20th International Conference on (pp.
886 814-819). IEEE.

887 OnFarm, 2016 <http://www.onfarm.com/>.
888 RESTful Web Services, 2016< http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html>
889 Serrouch, A., Mocanu, M. and Pop, F., 2015, June. Soil management services in Cluefarm. In Parallel and
890 Distributed Computing (ISPDC), 2015 14th International Symposium on (pp. 204-209). IEEE.
891 So-In, C., Poolsanguan, S. and Rujirakul, K., 2014. A hybrid mobile environmental and population density
892 management system for smart poultry farms. Computers and Electronics in Agriculture, 109, pp.287-301.
893 STOMP, 2016 <https://stomp.github.io/>
894 WEBPAGE TEST, 2016<http://www.webpagetest.org/>.

Dear Editor,

Here the highlight for the paper CLUeFARM: Integrated Web-Service Platform for Smart Farms:

1. This paper describes a web platform that comes in handy to fulfill the needs of the farmers,
giving them the possibility to manage monitor and control their farms from distance through
any device that has an internet connection (a phone, a table or a personal computer).

2. Before describing the architecture of the platform, we presented the architecture of the
system which contains the platform.

3. The platform is constituted of two main applications, decoupled from one another. We
propose an architecture along with the technologies used and a motivation for choosing
them, for each of these two applications and we also discuss the communication between
them.

4. We analyzed the performance of the platform through several tests which reveal the load
times of the platform and the response times of the services. We also explained the results.

Corresponding Author,

Prof. Florin Pop

