
Scalability of a Web Server
How does vertical scalability improve the performance of a server

Ancuta-Petronela Barzu, Mihai Carabas, Nicolae Tapus

University POLITEHNICA of Bucharest

Computer Science Faculty

Bucharest, Romania

ancuta.barzu@stud.acs.upb.ro, mihai.carabas@cs.pub.ro, nicolae.tapus@cs.pub.ro

Abstract—This paper presents how the performance of a

server is influenced by the applying a vertical scalability. The

paper studies the results obtained in measuring the response time

of the server and the processing time of the server when dealing

with a large number of requests by modifying the configuration

of the machine, increasing the number of cores the machine has

and increasing the RAM capacity. This represents a test to see

how many requests a server can process and complete when

dealing with large amount of data in a short period of time.

Keywords—server; scalability; vertical scalability;

performance; improvements; client; response time; processing

time; CPU; cores; RAM; capacity; machine; monitor; performance

improvement; virtual machine; component;

I. INTRODUCTION

With the expansion of the Internet and the rapid evolution
of technologies, a current problem when it comes to servers is
their capacity to scale for a large amount of data. Since
nowadays Internet connectivity does not represent an issue, the
response time of the server depends on the server itself, how it
handles its data by processing it.

Nowadays a server needs to be capable of processing a
large number of requests in a short period of time without
introducing latency. It is known that a machine is capable of
performing a number of tasks as its hardware allows it to. It is
known that a machine with a better configuration can process
more tasks than a machine with a weaker configuration, for
example a machine with 2 cores is theoretically capable of
processing the doubled number of tasks as a machine with 1
core.

This paper presents the problem of the scalability of a
server when dealing with a large amount of data and the
technologies used for this server. This paper also presents an
experiment which was conducted in order to determine how
vertical scalability affects the performance of the server. The
results of this experiment are also described as well as the
analysis of the obtained results.

The main objective of this paper is to obtain a better
response time from the server, and an improvement in
performance by conducting the vertical scalability experiment.

The first chapter presents a short introduction for this paper,
describing the problem at hand. The second chapter presents
similar experiments conducted when dealing with the
scalability of a server. The second chapter also present the
previous work that has been done for this paper. The third
chapter presents the changes that have been brought to the
server’s implementation as opposed to previous work. The
forth chapter describes the experimental environment in which
this experiment was executed. The fifth chapter presents how
the server reacted to the experiment and the results obtained
while conducting it. The sixth chapter presents the conclusions
of this paper. The seventh chapter presents a list of ideas that
could improve the server’s performance in the future.

II. RELATED WORK

Scalability refers to a term that defines the capacity of a
system, a network or a process to handle a large amount of
work. When talking about the scalability of a system, a set of
requirements must be specified in order to be considered
important. We can consider that a system is scalable if, by
adding hardware to the system, it gains an improvement in its
performance.

Vertical scaling refers to the process of enhancing the
system by adding resources to a single node, or removing
resources from a single node. In most cases, vertical scaling
refers to the addition of CPUs or memory capacity to a single
machine.

Article [1] describes a detailed analysis of an experiment by
measuring the vertical scalability of a Web Server and by
performing an analysis using a performance analysis
framework to determine the server’s behavior to the vertical
scalability. Their analysis concluded that by increasing the
number or processors of the server, the performance of the
server will also increase.

In order to conduct this experiment, the authors used a
Tomcat Servlet Container v5.0.19 [10] for the application
server. To test the system, they have developed the authors
used an Auction Site Benchmark, namely RUBiS [4] to
monitor the server’s activity and its behavior to various
requests. In order to generate requests for the server, the
authors used Httperf [5].

This configuration was deployed on a 4-way Intel XEON
1.4 GHz with 2 GB RAM running a 2.6.2 Linux kernel and
connected to the client machine through a 1 Gbps Ethernet
interface. They also included a separate machine to run a
MySQL v4.0.18 [13] database which was directly connected to
the server through a 100 Mbps Fast Ethernet crossed-link. For
the server, the authors have used Sun JVM 1.4.2 setting the
maximum Java heap size to 512 MB.

The results of these experiments are described in the
following table.

TABLE I. NUMER OF CLIENTS THAT SATURATE THE SERVER AND

MAXIMUM ACHIEVED THROUGHPUT BEFORE SATURATION

Number of

processors
Number of clients

Throughput

(replies/s)

1 250 90

2 500 172

4 950 279

Through this experiment, they have concluded that
increasing the number ok processors, the server is able to
handle more clients before saturation.

TABLE II. AVERAGE SERVER THROUGHPUT WHEN SATURATED

Number of processors Throughput (replies/s)

1 25

2 50

4 90

The results obtained from Table II reveal that the server can
obtain better throughput when increasing the number of
processors even if the server has reached a saturated state.

When analyzing the cause of the server’s saturation, the
authors concluded that the processors represents a bottleneck
for Tomcat performance in a secure environment. Thus, they
concluded that increasing the number of processors has a
positive effect on the server’s performance.

Article [2] presents an analysis a large Web-based shopping
system is affected by a workload generated in five days. Their
analysis was conducted in order to measure the scalability.
Through their analysis, they have discovered that horizontal
scalability isn’t always an adequate method to improve the
server’s performance when trying to support increased
workloads. Another conclusion would be that personalization
and robots may have a significant impact for the system’s
scalability. They have run this test for two periods of time, a
period being March 2000 and a second period being July 2000.

While conducting their analysis on the two periods of time,
the authors concluded that for the March period the traffic
describes a typical time-of-day pattern, while for the July
period it is revealed that the day of the week can affect the

server’s workload. The authors also concluded that, in certain
periods of the year, the traffic volume has a significant
increase. These periods are often before important holidays
such as Valentine’s Day, Christmas, Easter, Mother’s Day or
Father’s Day.

Article [3] performs an experiment to observe the evolution
of horizontal and vertical scalability of a Cluster-based
application server. The authors have evaluated the scalability of
a server and relevant performance metrics when improving the
server horizontally, by adding more machines to the system,
and vertically, by improving the already existing machines in
the system.

Their experiment started with a minimal cluster, having 2
servers each with one core, and then they doubled and
quadrupled the number or servers in the system as well as the
number of processors for each server. Their results are
described in the following tables.

TABLE III. RESULTS OF MEASURING THE CLUSTER’S PERFORMANCE

Cores/

Node

Nodes

2 4

1 123.55 (150 EB) 238.04 (280 EB)

2 236311 (280 EB) 278.83 (320 EB)

4 284.80 (320 EB) 284.80 (320 EB)

TABLE IV. SCALABILITY METRICS AND EXPECTED RESULTS

Cores/

Node

Nodes

2 4

1 1.00 (1) 1.93 (2)

2 1.91 (2) 2.26 (4)

4 2.31 (4) 2.31 (8)

From the above tables the authors concluded that, even
though the server presents an improvement in performance, the
actual results are somewhat far from the expected results,
especially concerning horizontal scalability.

Their results also concluded that horizontal scalability and
vertical scalability, when referring to small cluster-based
application server, are practically the same when it comes to
the performance of the server.

A. Previous Work

In previous work, described in the following paper [6], a
basic server was tested in order to observe how it reacts to a
large number of requests. The results of this experiment were
that, for the existing configuration of the server, it did not scale
for a large number of requests.

The server used the MEAN [14] stack in order to develop
the server. The technologies belonging to the MEAN stack are
as follows:

 Node.js [15] in order to develop the server-side
application;

 Express.js [16] is the web application framework
designed for Node.js to build web applications;

 MongoDB [17] is the database used for this application;

 AngularJS [18] is the JavaScript [19] framework used
to develop the front-end web application.

The main objective of the server used for the experiment
was to process a large amount of data and return the result to
the user. The processing is done by sending a request to the
server in order to process a large file.

The server was tested on a machine with the following
configuration, an Intel Core i5-4210U processor, 1.7 GHz
frequency, 8 GB RAM and a SSD hard of 256 GB. The
operating system used is a 64-bit Windows 8.1 operation
system.

The server was tested with a maximum of 100 simultaneous
requests, resulting in an average of 11 seconds spent per each
request, with the response time increasing with the growth of
the number of requests to process.

In the following chapters the results obtained from
performing a vertical scalability on the existing server will be
presented, as well as the modifications made to the server’s
configuration, as well as the server application.

III. SERVER CHANGES

Taking into account previous tests, and the fact that Node.js
does not permit creating threads natively, only by using various
third-party modules, but that defeats the purpose of actually
using Node.js, the server suffered a few modifications.

The biggest modification the server has suffered was the
technologies used for the back-end. These were changed from
Node.js to Java [20] for the back-end programming language,
and from Express.js to Spring Boot [21] for the framework
used to develop the server. By using Java as the back-end
technology, threads can be created in order to process requests.
The Spring Boot framework was chosen as it is the most
popular framework when developing Java server-side
applications.

The main core of the server, the basic server structure, was
generated using jHipster [22], a tool used to generate web
applications that use Java with Spring Boot as back-end
technologies, MongoDB for databases and AngularJS as front-
end technologies.

Another modification that was brought to the server was the
fact that the files for generating tasks are located on the server
side, the client only has to send the number of task needed and
the operation for this task. This change was made in order to
bypass the sending of a file from the client side, and it is being
used only for test purposes.

The last modification made to the server is the fact that
each request generates a thread in order to process the received
task and immediately send a response to the client saying that
the processing of the task has started. Thus, the server does the
process in background and the client does not receive a
Connection Timeout error.

IV. EXPERIMENTAL ENVIRONMENT

In order to test the vertical scalability of the web
application an experiment was devised so that proper measures
could be taken and generate reports based on the obtained
results.

The testing environment consists of two machines, one
machine used to deploy the server and the other machine used
as a client in order to send multiple requests to the server.

A. Server

The server’s main job was to run the web application
developed, receive tasks and process them in order to obtain a
better performance when dealing with a large amount of
requests. This web application is described by the Java server
generated using jHipster presented above.

Another important task for the server is running a small
monitoring script in order to obtain valuable information
regarding its physical components, such as CPU load and
RAM usage. This script was made in order to analyze how the
server is affected by the large number of requests.

In order to conduct the experiment of testing the vertical
scalability of the server, these two applications had to run at the
same time, the server in order to process requests, and the
monitoring script in order to obtain information about the
machine. In order to build the server, the project used Apache-
Maven [23].

The server was deployed on a virtual machine. Using
VirtualBox [24], a basic virtual machine was created with an
Ubuntu [25] 16.04 64-bit image. This virtual machine had a
basic configuration of 1 core with 4 GB RAM and a 50 GB
hard-drive. The machine has installed all necessary packages:
Java, MongoDB, Apache Maven and Node.js which was
needed for the jHipster generator.

B. Client

The client, or the test application for this experiment, ran on
a different machine than that of the server. The test application
represents a Java program that can generate a large number or
requests and send them to the server in order to process them.

In order to send a number of N requests simultaneously, the
test application generated different threads for each request, so
that each thread can handle its own task.

This application ran on a machine with a configuration of
Intel Core i7-3520M processors, with 2 cores of 2.9 GHz
frequency, 8 GB RAM capacity and an operating system of
Windows 10 64-bit. The test application was ran using the
IntelliJ [26] editor designed for building Java applications.

V. EXPERIMENTS AND RESULTS

In order to test the vertical scalability of the server, a few
experiments were conducted. In order to conduct these
experiments a series of tests were executed on the same
machine that suffered hardware improvements to test the
vertical scalability.

The server ran on a virtual machine which was improved
for each series of tests. The virtual machine’s initial
configuration was that of a 1 core with 4 GB RAM, 50 GB
hard disk and an Ubuntu 16.04 operating system. For further
tests this machine was improved by doubling the RAM
capacity as well as the number of cores the machine has.

The experiments consisted of running 9 test suits, each
with: 1 request sent, 10 requests sent, 25 requests sent, 50
requests sent, 100 requests sent, 250 requests sent, 500 requests
sent, 1000 requests sent and 2500 requests sent.

A. Experiments

Each experiment was conducted by altering the initial
configuration of the initial virtual machine, running the set of 9
tests and measuring how the machine reacted to these tests.
The measurements that were taken into consideration were the
average response time, the average processing time of a task,
the total processing time of all tasks, the CPU load and how
much RAM has been used while conducting the experiment on
each machine.

The average response time was measured in the test client
application, while the total processing time and average
processing time were measured on the server. To see how the
CPU and memory usage was affected, while the server was up,
a monitoring script was running in parallel that gathered
information of CPU load and memory usage in percentages, at
every second.

In order to measure the performance of improved servers, a
ration between the measurements obtained from the first
experiment and the measurements obtained from improved
configurations had been calculated to determine how well the
server has improved. Each experiment was compared to the
base experiment, the 1 Core with 4 GB RAM configuration. If
the performance coefficient has a value over 1 then we can say
that the server has obtained an improvement in performance.

The following subchapters describe the observations that
were made while conducting the experiment for each
configuration.

1) 1 Core with 4 GB RAM configuration
While testing the first configuration, what was observed

was the fact that for the 500 requests test, for the first try, the
server stopped processing requests after 490 requests. After
running the test again, it did not fail offering a result. Another
observation was made when running the 1000 requests test.
This test was executed 3 times, each time the server stopped
processing after a number of requests. The maximum number
of requests the server managed to process was that of 824.
Seeing as how after three trials the server couldn’t manage to
process al 1000 requests, no further tests were executed. The
results are described in the following table.

TABLE V. THE MEASUREMENTS OBTAINED FOR THE CONFIGURATION OF

1 CORE AND 4 GB RAM

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

1 0.416 1.771 0.428

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

10 3.948 0.799 4.572

25 6.124 7.405 12.338

50 8.583 13.991 24.849

100 10.359 22.382 45.956

250 9.871 56.372 112.333

500 10.541 225.524 226.825

From the obtained measurements, we can conclude that the
average processing time has a logarithmical growth, the total
time to process all requests has a linear growth, while the
average response time tends to have an exponential growth but
after a number of requests this becomes linear.

While monitoring the server’s activity in order to obtain
data about the CPU load and RAM usage, it was observed that
these characteristics increased with the number of requests, the
more requests the server had to process resulted in high CPU
load and RAM usage. The CPU load does not increase more
that 45%, while the percentage of used RAM has a linear
growth, but never exceeding 35%. The percentage of used
RAM by the Java process almost has a constant value below
10%.

2) 1 Core with 8 GB RAM configuration
One thing to observe while running the tests for this

configuration was the fact that for 500 requests, while running
the tests, the server stopped processing requests after the 464th
request, thus a new run was made. On the second try it stopped
at the 440th request. For the third run of this test case all
requests were processed. Continuing to the 1000 requests test,
the experiment was conducted four times. The first three
experiments stopped after a number of requests while the forth
test ran without problem. The 2500 requests tested ended with
three trials, all exhibiting a sudden stop after a number of
requests. The first time the test was run, the server stopped
processing after 2170 requests, the second time after 1860
requests and the third time after 1174 requests. Seeing as how
the maximum number of requests the server was able to
process started to decrease drastically, no more experiments
were conducted for this configuration. The results for this
configuration are presented in the following table.

TABLE VI. THE MEASUREMENTS OBTAINED FOR THE CONFIGURATION OF

1 CORE AND 8 GB RAM

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

1 0.608 0.695 0.614

10 4.071 0.749 4.596

25 7.943 4.384 12.031

50 11.795 8.458 22.026

100 9.333 23.864 46.686

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

250 10.983 54.002 108.503

500 12.850 116.218 239.010

1000 13.441 227.582 458.613

The same observation as the previous configuration
regarding the average processing time and total processing time
can be made to this experiment as well. The difference between
this configuration and the previous one is that the average
response time has a linear growth.

While calculating the ratio between the two measurements,
it was observed that the performance coefficient has a value
around 1, meaning that the increasing of the RAM capacity did
not bring a big improvement.

The CPU load in this case has almost reach full capacity,
being above 80% for the last test run. The percentage of used
RAM by the machine and by the Java process almost have a
constant growth, never exceeding 25% and 10%.

3) 1 Core with 16 GB RAM configuration
While testing this machine, it was observed that everything

went smoothly until the test involving 1000 requests when after
3 trials, the server still didn’t manage to process all requests.
For the first trial the server stopped processing after 948
requests, the second one stopped at 799 requests and the third
one stopped at 725 requests. After seeing that the number of
requests processed kept decreasing, no further tests were made.
The results can be seen in the following table.

TABLE VII. THE MEASUREMENTS OBTAINED FOR THE CONFIGURATION OF

1 CORE AND 16 GB RAM

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

1 0.517 0.713 0.526

10 3.9673 0.7938 4.284

25 9.0574 1.5454 11.456

50 17.33258 4.49798 22.056

100 14.37559 19.24522 46.714

250 14.552752 48.302796 106.581

500 14.774252 102.667852 214.242

The observation for how these measurements tent to grow
is the same as the previous experiment, the average processing
time having a logarithmical growth, while the average response
time and the total processing time have a linear growth.

The ratio obtained for the average response time in half of
the test cases is above 2 and overall above 1. The ratio for the
total processing time and the average processing time have
values around 1.

The CPU load and RAM usage increased as the experiment
kept progressing, with the CPU having a tendency to reach its
maximum capacity, as it reached 80% when running the last
test. The percentage of used RAM rarely exceeds 10%, keeping
a constant growth.

4) 2 Cores with 4 GB RAM configuration
When testing this configuration, what was observed was the

fact that until the 1000 requests test, all tests ran smoothly. For
the 1000 requests test, the server stopped processing after a
number of requests (992, 865, 998, 998). Seeing as how these
numbers were close to 1000, the test was run for a fifth time
with the result of processing all requests. For the 2500 requests
tests, though, after 5 trials, the server still didn’t manage to
process all requests, stopping at 2311 requests, 2418 requests,
2062 requests, 2144 requests and 2004 requests. Since these
numbers are far from 2500, the testing has stopped. The result
of this experiment can be observed in the following table.

TABLE VIII. THE MEASUREMENTS OBTAINED FOR THE CONFIGURATION OF

2 CORES AND 4 GB RAM

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

1 0.328 0.689 0.353

10 2.441 0.746 2.843

25 4.649 1.255 5.586

50 8.821 1.379 10.672

100 16.212 3.887 21.94

250 25.544 15.770 54.698

500 28.746 40.319 105.726

1000 36.476 91.703 218.201

The same observation can be made for this configuration as
well, the average processing time has a logarithmical growth,
while the average response time and total processing time have
a linear growth.

The ratio obtained for the average response time, compared
to the base configuration was in most cases above 2. The
average processing time ratio still maintains its value around 1,
but the total processing time ratio is over 2 in most cases.

The CPU load is a bit high as it reaches 80%. The
percentage of used RAM by the machine has a linear to
constant growth, never exceeding 60%, while the percentage of
the used RAM by the Java process is closer to a constant
growth by never exceeding 20%.

5) 2 Cores with 8 GB RAM configuration
What was observed for this configuration during the tests

was that until the 500 requests test no error occurred, but for
the 1000 requests test, the first time it ran it stopped at 792
requests. This was a small number so the test was rerun. After
the rerun on this test, all requests were successful. While
running the 2500 requests tests, it was observed that the server
stopped after a certain number. For the first trial the server
stopped processing after 2356 requests. For the second trial, it

stopped after 2490 requests. For the third one the server
stopped at 2360 requests and for the forth one it stopped at
2338 requests. Seeing as how, no matter how many times the
tests were run, the server stopped at a point, no further tests
were done. The measurements made for this experiment can be
found in the table below.

TABLE IX. MEASUREMENTS OBTAINED FOR THE CONFIGURATION OF 2

CORE AND 8 GB RAM

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

1 0.394 0.621 0.395

10 2.3455 0.845 2.642

25 4.796 0.876 5.513

50 8.655 1.544 10.649

100 16.042 3.176 21.183

250 29.287 12.784 52.365

500 34.669 36.715 104.167

1000 37.552 84.606 201.942

From the obtained measurements, we can conclude that the
average processing time has a logarithmical growth, while the
average response time tends to have a linear growth as well as
the total processing time.

The ratio of the average response time has a value over 2 in
most cases, as well as the total processing time ratio, but the
average processing time ratio has a remained constant, having a
value around 1.

The CPU load characteristic can be considered high as it
reaches 80% capacity. The percentage of used RAM as well
increases with the number of requests but it is never above
40%. The percentage of used RAM by the Java process
increases as well but it is never above 20% of the total RAM.

6) 2 Cores with 16 GB RAM configuration
For this experiment, what was observed was the fact that,

until the 1000 requests tests, no error occurred. For the 1000
requests test the server stopped processing after 860, but after a
retrial of the test, it succeeded in completing all requests. For
the 2500 requests test, though, 5 retrials were made, each of
them ending with the server stopping at a point in time. It
stopped after 2490 requests at first, thus being close to 2500 the
test was rerun, but the server never managed to process all
requests, thus the testing stopped. The results of this
experiment can be found in the following table.

TABLE X. MEASUREMENTS OBTAINED FOR THE CONFIGURATION OF 2

CORE AND 16 GB RAM

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

1 0.419 0.607 0.426

10 3.966 0.776 4.48

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

25 6.699 1.133 7.615

50 8.056 1.484 9.657

100 15.568 3.041 19.832

250 23.406 13.226 46.436

500 25.937 34.910 93.05

1000 27.507 79.238 181.966

This configuration also presents a logarithmical growth for
the average processing time and a linear growth of the average
response time and total processing time, similar to the first
experiment.

The ratio obtained for the average response time has a value
above 2 in most cases. The ratio for the total processing time in
most cases is above 2. The ratio for the average processing
time, though is still constant around the value of 1.

When the machine was monitored, it was notable that the
percentage of how much RAM is being used by the machine
never exceeds 20%, while the CPU load tends to reach 80%.

7) 4 Cores with 8 GB RAM configuration
When testing this configuration, what was observed was the

fact that for the 1000 requests test the server stopped
processing after a number of requests. It took 5 trials in order
for the server to finish processing these requests. When running
the 2500 requests test the server had a similar behavior as to
the previous one. It stopped processing requests after around
2200 requests, but after 5 trials the server managed to process
them all. The measurements obtained for this configuration can
be found in the following table.

TABLE XI. MEASUREMENTS OBTAINED FOR THE CONFIGURATION OF 4

CORE AND 8 GB RAM

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

1 0.365 0.634 0.366

10 0.735 0.833 1.32

25 2.336 0.8047 2.788

50 3.871 1.111 4.791

100 6.498 2.599 9.668

250 10.243 7.835 22.788

500 13.917 18.055 45.813

1000 15.799 40.056 94.02

2500 15.010 113.571 220.25

These measurements present the same growth as previous
experiments, logarithmical growth for the average processing
time, and linear growth for the average response time and total
processing time.

The ratio of the average response time was observed to
have a value over 2, in most cases having a high value, even
that of 12. The ratio for the average processing time has
improved as well, having mostly values over 1.5 while the ratio
for the total processing time is above 3 in most cases.

The CPU load never reaches full capacity, the maximum
value being that of 70%. The load on each CPU is similar to
the average CPU load. The RAM capacity that is never above
40% while the RAM used by the Java process never increases
above 20%.

8) 4 Cores with 16 GB RAM configuration
When conducting this experiment, it was observed that it

encountered problems only when dealing with the 2500
requests test. There were 5 trails for this test, in the end the
server managed to process all requests. The following table
best describe de obtained results.

TABLE XII. MEASUREMENTS OBTAINED FOR THE CONFIGURATION OF 4

CORE AND 16 GB RAM

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

1 0.323 0.597 0.323

10 0.983 0.666 1.225

25 2.402 1.148 2.959

50 4.249 1.165 4.992

100 7.106 1.917 9.273

250 11.175 7.573 22.719

500 11.665 18.694 44.193

1000 13.904 38.909 87.946

2500 16.401 100.132 210.457

The same observation can be made regarding the growth of
the three measurements, the average processing time has a
logarithmical growth, while the average response time and total
processing time have a linear growth.

The ratio for the average response time was calculated and
in most cases had a value over 3, even reaching the value of 11
in some cases. The ratio for the total processing time has a
value above 3 in most cases and the ratio for the average
processing time has a value above 2 in half of the cases.

The CPU load on each core is similar to the average CPU
load and it never exceeds 60%. The used RAM also increases
but the maximum value it reaches is that of 20%, while the
RAM used by the Java process grows as well but it is a bit over
10%.

9) 4 Cores with 32 GB RAM configuration
The last configuration tested was that of 4 Cores with 32

GB RAM. When running the tests, it was observed that, until
reaching the 2500 requests test, the server managed to process
al requests. For the 2500 requests, though, the test had to be run
a number of 5 times in order to process all requests. The results
obtained are described in the following table.

TABLE XIII. MEASUREMENTS OBTAINED FOR THE CONFIGURATION OF 4

CORE AND 32 GB RAM

No.

req.

Avg. proc. time

(seconds)

Avg. resp. time

(seconds)

Server proc. time

(seconds)

1 0.347 0.602 0.348

10 3.2038 0.6736 4.495

25 6.609 1.00828 7.537

50 4.79868 2.12062 6.907

100 8.19832 2.50827 11.414

250 10.481604 9.111256 24.649

500 14.373798 18.951246 49.192

1000 17.74672 42.237994 96.843

2500 20.14575 102.145215 209.451

We can conclude, from the measurements made, that the
average processing time has a logarithmical growth, while the
average response time and total processing time tend to have a
linear growth.

The ratio for the average response time is above 2 in all
cases and mostly above 6. The ratio for the total processing
time is above 3 while the ratio for the average response time is
mostly above 1. The server exhibits an improvement.

With the number of requests the server had to process, the
CPU load and the used RAM capacity have increased. Each
core has a CPU load similar to that of the average CPU load
and it never exceeds 60%. The percentage of used RAM has a
more constant growth and never exceeds 20%, while the
percentage of used RAM by the Java process never exceeds
11%.

B. Results

While conducting these experiments, it was observed that
the average processing time tends to have a logarithmical
growth in all cases, while the average response time and total
processing time have a linear growth, thus with the increasing
number of requests, the response time and total processing time
increase as well.

The comparison made with the base configuration has
proven that, with the improvements of certain components of
the server, the response time and processing time improve as
well, the server being able to process more requests in a shorter
period of time and offer a response as well.

When monitoring the activity of the server it was clear that
the CPU load and memory usage increased with the number of
requests the server had to process. The load was distributed
evenly on each CPU, in cases of configurations having 2 ore 4
cores, while the RAM usage tends to grow but in a more
constant manner.

With the help of these 9 experiments we can conclude that
the increase in RAM capacity has little effect on the
performance of the server, while increasing the number of
cores the server has exhibits a growth in performance, mainly

the response time of a request, which is the most important
aspect for a client as well as the total processing time of all
requests.

VI. CONCLUSIONS

This paper’s objective was to observe the increase in
performance of a server while executing a series of tests on
various configurations. The method to study this increase in
performance was that of vertical scalability, meaning
improving one, or more components of the machine in order to
bring a better response.

This paper tested the server on a number of 9
configurations, starting from a configuration of 1 Core with 4
GB RAM and increasing the RAM capacity and the number of
cores by doubling them until reaching a configuration of a
machine with 4 Cores and 32 GB RAM.

By running the set of tests of sending a large number of
requests to the server, it was observed that with the increase in
the number of Cores the server exhibits a significant
improvement in its response time and total processing time,
decreasing the two mentioned characteristics to half each time
the number of Cores were increased.

By increasing the RAM capacity, though, the server
showed small improvements in time, almost insignificant, but it
reduced the number of failed tests, the server managing in the
end to process all given requests without the necessity of
rerunning a series of tests to determine the response time.

VII. FURTHER WORK

Besides vertical scalability, there is horizontal scalability as
well which implies increasing the number of machines in order
to process requests to improve the server’s performance in
response time and processing time.

An improvement in the server’s performance as further
work would be to use horizontal scalability to monitor how the
server responds to a large number of requests.

Another method of improving the server’s performance is
to use vertical scalability with horizontal scalability to see how
the server reacts to a large number of requests when increasing
the number of machines as well as improving the machines by
improving various components of the machines (number of
cores, RAM capacity, storage capacity, etc.).

Another way to improve the performance of the server
would be to use existing solutions offered by various
companies, such as using the EC2 offered by Amazon Web
Services [8], or to use the existing solution offered by Google,

namely Google Cloud Platform [9]. An issue with these
solutions is that they require finances [7] in order to build a
distributed solution but the advantage would be that these
platforms offer management of the servers as well.

As further work, an implementation of this server by
scaling it horizontal and vertical will be made. The results of
these modifications will be discussed in future papers.

REFERENCES

[1] Guitart, Jordi, et al. “Characterizing secure dynamic web applications
scalability”, Parallel and Distributed Processing Symposium, 2005
Proceedings. 19th IEEE International. IEEE 2005.

[2] Arlitt, Martin, Diwakar Krishnamurthy, and Jerry Rolia. “Characterizing
the scalability of a large web-based shopping system.” ACM
Transactions on Internet Technologies 1.1 (2001): 44-49.

[3] Garcia, Daniel F., et al. “Experimental evolution of horizontal and
vertical scalability of cluster-based application servers for transactional
workloads.” 8th International Conference of Applied Informatics and
Communications (AIC’08). 2008.

[4] Amza, Cristina, et al. “Specification and implementation of dynamic
web site benchmarks.” 5th Workshop on Workload Characterizations.
No. LABOS-CONF-2005-016. 2002.

[5] Mosberger, David and Tai Jin, “httperf – a tool for measuring web
server performance.” ACM SIGMETRICS Performance Evaluation
Review 26.3 (1998): 31-37.

[6] Ancuta-Petronela Barzu. (2015, September). “Scalability of a Web
Server: How does a server scale when dealing with large amounts of
data.” unpublished

[7] Aviv Kaufmann, Kerry Dolan. (2015, June) “Price Comparison: Google
Cloud Platform vs. Amazon Web Services. ESG.” [Online]. Available:
https://cloud.google.com/files/esg-whitepaper.pdf

[8] Amazon Web Services, https://aws.amazon.com

[9] Google Cloud Platform, https://cloud.google.com

[10] Jakarta Tomcat Servlet Container, http://jakarta.apache.org/tomcat

[11] RUBiS: Rice University Bidding System, http://rubis.ow2.org

[12] Httpperf(1) – Linux man page, https://linux.die.net/man/1/httperf

[13] MySQL, http://www.mysql.com

[14] MEAN Stack, http://mean.io

[15] Node.js, https://nodejs.org/en

[16] Express.js, https://expressjs.org

[17] MongoDB, https://www.mongodb.com

[18] AngularJS, https://angularjs.org

[19] JavaScript, https://www.javascript.com

[20] Java, https://www.java.com/en

[21] Spring Boot, https://github.com/spring-projects/spring-boot

[22] jHipster generator, https://jhipster.github.io

[23] Apache Maven, https://maven.apache.org

[24] VirtualBox, https://www.virtualbox.org

[25] Ubuntu, https://www.ubuntu.com

[26] IntelliJ, https://www.jetbrains.com/idea

https://cloud.google.com/files/esg-whitepaper.pdf
https://aws.amazon.com/
https://cloud.google.com/
http://jakarta.apache.org/tomcat
http://rubis.ow2.org/
https://linux.die.net/man/1/httperf
http://www.mysql.com/
http://mean.io/
https://nodejs.org/en
https://expressjs.org/
https://www.mongodb.com/
https://angularjs.org/
https://www.javascript.com/
https://www.java.com/en
https://github.com/spring-projects/spring-boot
https://jhipster.github.io/
https://maven.apache.org/
https://www.virtualbox.org/
https://www.ubuntu.com/
https://www.jetbrains.com/idea

