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Abstract

Data processing for Smart Cities become more challenging, facing with different
handling steps: data collection from different heterogeneous sources, processing
sometimes in real-time and then delivered to high level services or applications
used in Smart Cities. Applications used for intelligent transportation systems,
crowd management, water resources management, noise and air pollution man-
agement, require different data processing techniques. The main subject of this
paper is to propose an architecture for data processing in Smart Cities. The
architecture is oriented on the flow of data from the source to the end user. We
describe seven steps of data processing: collection of data from heterogeneous
sources, data normalization, data brokering, data storage, data analysis, data
visualization and decision support systems. We consider two case studies on
crowd management in smart cities and on Intelligent Transportation Systems
(ITS) and we provide experimental highlights.

Keywords: architecture; big data; data processing; crowd sensing; crowd
dynamics; intelligent transportation systems

1. Introduction1

More and more applications today use, generate and handle very large vol-2

umes of data. In particular, this is true for Smart City applications, which3

attract a rapidly increasing interest from government, companies, citizens, de-4

velopers, scientists, etc. They cover a large spectrum of needs in public safety,5

water and energy management, smart buildings, government and agency admin-6

istration, social programs, transportation, health, education. They are fed with7

huge amounts of input data, in various formats, from a continuously increasing8

number of sources (sensors, governmental, regional, and municipal sources, cit-9

izens, public open data sources, etc.), and are described by a complex workflow10
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and in many cases impose real-time processing capabilities, useful in decision11

taking.12

The large volume of data coming from a variety of sources and in various13

formats, with different storage, transformation, delivery or archiving require-14

ments, complicates the task of context data management. At the same time,15

fast responses are needed for real-time applications. Despite the potential im-16

provements of the Smart City infrastructure, the number of concurrent appli-17

cations needing quick data access will remain very high. With the emergence18

of the recent cloud infrastructures, achieving highly scalable data management19

in such contexts is a critical challenge, as the overall application performance is20

highly dependent on the properties of the data management service.21

Extracting valuable information from raw data is especially difficult con-22

sidering the velocity of growing data from year to year and the fact that 80%23

of data is unstructured. In addition, data sources are heterogeneous (various24

sensors, users with different profiles, etc.) and are located in different situa-25

tions or contexts. This is why the Smart City infrastructure runs reliably and26

permanently to provide the context as a “public utility” to different services.27

Context-aware applications exploit the context to adapt accordingly the timing,28

quality and functionality of their services. The value of these applications and29

their supporting infrastructure lies in end-users always operating in a context:30

their role, intentions, locations and working environment constantly change.31

As the scale, complexity and dynamism of distributed systems is dramati-32

cally growing, their configuration and data management have started to become33

a limiting factor of their development. This is particularly true in the case of34

Cloud is used for data storage and also for data processing, where the task35

of managing hundreds or thousands of nodes while delivering highly reliable36

services entails an intrinsic complexity. Furthermore, Cloud computing intro-37

duces another challenge which impacts on the resource management decisions.38

In these contexts, self-management mechanisms have to take into account the39

cost-effectiveness of the adopted decisions.40

Considering all of these aspects, the main subject of this paper is to pro-41

pose an architecture for Big Data processing in Smart Cities. The architecture42

is oriented on the flow of data from the source to the end user. We describe43

seven steps of data processing: collection of data from heterogeneous sources,44

data normalization, data brokering, data storage, data analysis, data visualiza-45

tion and decision support systems. We describe two case studies on crowds’46

management in smart cities and on Intelligent Transportation Systems (ITS).47

The paper is structured as follows. Section 2 presents the related work on48

crowd data smart cities and on ITS. The proposed architecture is presented in49

Section 3. Two use cases are described in Section 4. Then, the experiments50

obtained for these use cases are presented in Section 5. The paper ends with51

conclusions and future work presented in Section 6.52
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2. Related Work53

Smart Cities [1] represent an important goal which can dramatically improve54

the life of citizens. There is a lot of research aiming to get us closer and closer55

to this goal. The idea of a smart city is in accordance to other movements in56

research such as Internet of Things [2, 3, 4] and Big Data [5]. New York times57

actually declared this period the ”Age of Big Data” 1.58

In order to enable Smart Cities technologies such as Internet of Things, Wire-59

less Sensor Networks [6] and Crowd Sensing [7] are the catalysts providing data60

about our cities. The need for sensing in Smart Cities is explored in [8]. This61

data needs to be processed often using Big Data techniques in order to extract62

the information required to make decisions about the cities. This information63

and the decisions are then used in order to inform the citizens to take certain64

actions or to activate actuators for enabling automatic processes. A good ex-65

ample where actuators can improve Smart Cities is given by the management66

of green spaces [9].67

Probably the most important issues addressed in order to build Smart Cities68

are the ones of Crowd Dynamics [10]. In order to understand Crowd Dynamics,69

we need data on the movements of as many people as possible. These move-70

ments need to be recorded for both pedestrians [11] and for vehicles [12]. The71

problem of tracking is not solved in any of the two scenarios. This is surprising,72

considering the problem of tracking a particular individual is usually solved by73

the use of GPS [13]. However, GPS requires user participation which is difficult74

to obtain, in contrast WiFi [14] or cellular methods [15] can be used to gather75

data on large crowds. These systems also do not work indoors and require76

the cooperation of the individual being tracked in order to generate a position77

estimate.78

It is important to treat both indoor and outdoor cases when considering79

human mobility. This is because modern vital facilities, such as hospitals, which80

are part of the backbone of many cities consist of large areas with multiple81

buildings. An example of how the dynamics inside these facilities can be used82

in order to improve the layout of the facility is given by Ruiz et al [16]. Similarly,83

Universities campuses, another type of large facilities at the core of cities, are84

analyzed [17], [18] in order to better understand the dynamics inside them.85

Crowd tracking experiments are taking place in a wider variety of places86

like mass events [19] or festivals [20]. They are also used in order to measure87

queues using only WiFi signals [21]. This queue can represent waiting time at88

a counter, which directly affects customer experience or the movement through89

security lines at an airport [22].90

Crowd Sensing can be used in order to extract all types of data for smart91

cities. A powerful example is given by the authors of [23] where students are92

asked to take pictures of plants around the campus. The pictures are then93

analyzed by scientists in order to better understand the status of flora. Projects94

1”The age of big data” - Steve Lohr, New York Times, 11, 2012
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like this could potentially be used at the scale of a city in order to measure a95

large variety of features. It is not always necessary for people to be active in their96

participation of data gathering. Passive systems require only their presence in97

the monitored location, which can even be obtained in an opportunistic manner.98

Whenever any citizens carrying the scanner walks or drives on a specific street99

data about the street can be gathered. In this way maps can be enhanced100

with features [24] such as roundabouts or pot-holes. Diverse uses include even101

earthquake detection [25] and soon maybe even the detection of effects produced102

by these large natural disasters.103

There are many projects and platforms targeted directly at crowd sensing:104

Medusa [26], Matador [27], Mosden [28] and mCrowd [29]. And these platforms105

already implement important features for Smart Cities such as crowd sources106

new reporting [30] but they do not yet combine the data sets or offer a method107

to analyze the data in order to extract information hidden inside it. This type108

of information represents answers to questions that we don’t yet have and they109

can currently only be obtained by using Big Data techniques.110

The data gathered from all these systems is usually analyzed by experts or111

scientist manually. This is the case for [16], where categorization of individuals112

into different groups such as patients or staff is done by using rules built by113

experts. More information can be extracted from these data sets if they are114

combined and Big Data systems are used to process them.115

Real-time processing is used to designate a category where the job outcome116

is needed as fast as possible, and usually the task itself is not something taking117

a long time to process. These systems can be categorized as hard or soft. A118

Hard real-time system is an OS for a nuclear plant or a plane. Tasks must be119

scheduled and completed fast because otherwise a catastrophe could happen.120

These systems are usually governed by hard deadlines and the scheduler must121

insure they are achieved. Soft real-time systems are the ones like hotel book-122

ing or video streaming sites [31]. The answers must be delivered fast to the123

customers, but a delayed frame now and then cannot lead to disastrous results.124

One article which explores this type of hard real-time scheduling is [32]. In125

the paper the authors try to improve the scheduling capabilities of a system by126

also adding security checks to the incoming jobs. The added module can detect127

threats brought by snooping, alteration of spoofing and can be easily added to128

any real-time scheduler. Their security module name SAREC (security-aware129

real-time heuristic strategy for clusters) integrates with the popular Earliest130

Deadline First algorithm to create a security aware scheduler named SAEDF.131

Although the matter of securing the interactions between the users and the132

cluster infrastructure is important, in our case a large portion of these measures133

could be implemented in an intermediate cluster proxy module if needed, with134

little overhead to the job itself. By using a proxy to mediate all user-cluster135

interactions we can alleviate a large number of security risks. If a user has a136

malicious intent and manages to submit a job that poses a security risk, runing137

all jobs in virtual machines on the cluster infrastructure will limit the damages138

to only the users task.139

Another example of real-time processing and scheduling [33]. The authors140
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talk about the problem of soft real-time scheduling in rendering 3D images inside141

the Google Earth software. The Google Earth software allows one to navigate142

anywhere in the world and has multiple viewing modes from virtual 3D ren-143

derings to satellite imagery. A frame is a static 2D representation, rendered on144

the screen at a given time. To ensure a smooth navigation experience, at least145

60 of these frames must be rendered on the users’ screen in a second. When146

a scheduling deadline is not met, the previous frame is redisplayed causing the147

application to ”stutter”. In order to alleviate the problems, the authors have148

devised a new algorithm that better estimates rendering time on multiple de-149

vices, in order to improve scheduler accuracy. We are in particular interested in150

their scheduling model and discovered they also abstracted some of the events151

into ”single-active sporadic tasks” (triggered by a specific rendering phase) and152

”soft real-time aperiodic tasks (triggered by receiving new imagery through net-153

work)”. We will use similar terms to define the submit patterns and properties154

of different types of jobs.155

Talking about the arrival patterns of the jobs, the authors from [34] build156

a common approach to schedule static and dynamic tasks, in a system which157

also has to deal with hard real-time deadlines. They divide their tasks in 3158

categories, based on their arrival pattern and number of instances they require159

for running. Aperiodic tasks need only one instance to run, and can enter the160

system at any time. Both periodic and sporadic tasks require multiple instances161

to run, but while the former come at a specific interval of time, the latter can be162

submitted like the aperiodic tasks, at any time, but no sooner than a specified163

interval. The authors have extended a previous static time-based scheduling164

algorithm into a dynamic version which constantly changes the expected start165

and end time of jobs while still keeping the end time in the necessary deadline.166

They have thus provided two versions of their scheduler, one accepting aperiodic167

tasks without affecting the existing task instances deadline, and another, with168

the same properties, accepting periodic and sporadic tasks. Before accepting169

any task, a formal schedulable test is run, to see if the system can handle the170

tasks deadline. If not, it is rejected. The scheduled tasks are considered to171

be preemptive, and a list of static tasks known beforehand is expected to be172

provided at system startup. To account for dependencies between tasks, start173

and end times are parameterized instead of being given a fixed value.174

We also investigated solutions related to intelligent transport systems, since175

this is the type of workload we are going to test our scheduler on. The [35]176

project tries to act as a hub for such endeavors in order to help each of the177

individual current ITS system grow and communicate through a common point178

of contact. These systems are increasingly important since optimizing traffic179

can also reduce CO2 emissions along with the benefits brought to all the in-180

habitants of a city. Current implemented solutions are mostly proprietary and181

involve infrastructure changes. There are a number of existing solutions trying182

to estimate the state of the traffic, ranging from sensors in the road, to GPS183

systems on cars, to cameras interpreting images. Indifferent of the chosen so-184

lution, all of these systems will generate a large amount of data which has to185

be interpreted city-wide. Although our solution uses a small part of this data,186
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it could grow and adapt to provide the necessary analysis needed to drive an187

intelligent city of today.188

3. Data Flow based Architecture189

We propose an architecture which contains several steps represented by the190

flow of data from the source to the end user. The data represents the input of191

our system, it is used to create valuable good for the users, usually in the form192

of information or automatic actions.193

We created a seven step architecture to accomplish our goal to make from194

data a value (see Figure 1): first we need to aggregate the data sources, then we195

need to perform data normalization, but before doing that we need to anonymize196

the data which comes from personal devices. The next step is to create a context197

for the gathered data and after that we should send it to be stored and processed198

in a parallel and distributed way. The result of the processing will provide the199

starting point for data analysis which will generate the patterns and discover200

the insights we need. In the end all the findings need to be visualized in an201

advanced style to empower the decision makers.202

Figure 1: Proposed Architecture.

Data comes from different sources and we need to collect it from everywhere:203

smart sensors, personal devices, batch data from city systems, real-time systems204

in order to be able to extract as much knowledge as we can from it. When we205

combine different data sources related to the same context then we can get more206

insights from it and this empowers decision makers to minimize the risks.207

We have plenty of law constraints and each country has its own regulations208

regarding data privacy so we need to address this important issue because when209

a user decided to contribute to a system he needs to be sure he remains anony-210

mous and other users cannot trace him back starting from the pieces of data211

provided by him. We need to make sure he cannot be identified from a group212
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of users which contribute to the system with their data by using techniques213

and algorithms for data anonymization. Data collection needs to be done while214

considering data privacy. This can be achieved by using a data anonymization215

module. Anonymization needs to be done as close to the source as possible to216

avoid any data leaks, that could identify an individual as a data provider.217

Real-time systems data needs to be normalized by using ETL - Extract,218

Transform and Load - representing 3 database functions joined in one tool in219

order to get the data out from a database and introduce it into another one.220

City systems batch data needs to be normalized by EBS - Electronic Batchload221

Service –which is an “Online Computer Library Center” service permitting to222

the batch load participants to send data to it over the Internet [36, 37].223

In the next step the data reaches the context broker which takes individual224

pieces of data and puts them into a relevant context. A context broker is225

represented by a service which needs to gather context data from different types,226

sources and velocity, then it needs to create the conditions, integrate the data,227

create the rules to be able to provide prepared context data. A certain piece of228

data is meaningful only in appropriate relation to other pieces of data, which229

happens only in a given context.230

After we created the links between the data and the context information we231

send the data to the distributed storage and processing frameworks. In order232

to create a powerful platform for big data processing we need to combine the233

patterns extracted from the batch data processing with the speed from real-time234

data processing. The main idea is to bring together real-time data processing235

and batch processing when dealing with large data sets.236

We proposed two well-known frameworks to be used in this step of the data237

flow: Hadoop, which is focused on batch data processing and Storm, which han-238

dles real-time data processing. Hadoop, architected around batch processing, is239

the most popular open-source software framework for distributed storage and240

distributed processing of big data on clusters. The main advantages are given241

by being designed to be fault-tolerant, it is highly scalable and cost effective.242

The main components of Hadoop are the storage called Hadoop Distributed243

File System (HDFS), and the processing part called MapReduce. Real-time244

data processing involves a continuous input, process and output of data. Data245

must be processed in a small time period (or near-real-time) so we recommend246

to use Storm because it is a free, open source, distributed real-time system that247

can compute over a million tuples per second on each node. Other big advan-248

tages are given by the scalability, fault-tolerance and by guaranteeing the data249

processing. Also it is simple to set up, utilize, and integrate with other queue-250

ing and database technologies, which is a big plus especially when you need to251

create a big data platform for smart cities.252

When processing the data, we can perform big data analytics, statistical253

and numerical analysis or real-time data analysis to gain valuable assets. In the254

end, we need advanced data visualizations to enable the user to take the right255

decisions, or to make long term actions based on historical data.256

Real-time data processing and analytics allows decision makers the oppor-257

tunity to take immediate action when it is required and batch data processing258
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makes the results to be more accurate due to the patterns discovered and then259

applied in real-time to get more relevant data.260

We need to combine the data from multiple sources to be able to predict261

future events in order to respond in an efficient way to make a difference. It262

is important to engage the users and to achieve this we need to empower and263

motivate them. A way of smart user engagement and advanced visualization is264

gamification. For example, users of a mobile application can share status about265

how much do they recycle different things, or how much CO2 they produced266

based on how many km they were driving in a day, and enter in competitions267

with others on social media.268

4. Architecture Use Cases269

4.1. Intelligent Transportation Systems270

Large cities present many problems with their systems, but only transporta-271

tion system entertains the dynamics of this environment. Currently, it cannot272

cope anymore with the enormous number of cars driven on its streets using273

classical traffic systems. Any problems like congestion, accidents, high fuel con-274

sumption, pollution, etc. which affect us daily in a city can have as root causes275

the bad usage of current infrastructure or not enough streets for current traffic276

flow.277

Trying to solve the second cause is a temporary solution due to the con-278

tinuously increasing cars’ number, because any new street added will move the279

problems from one street to another or in short time if the city area which280

presents these issues will bring more traffic to it once new streets will be added.281

Also, adding new streets for vehicular traffic is very hard to be done in cities’282

centers. The majority of the problems encountered by citizens of a metropolis283

in traffic are especially determined by the bad traffic planning or by the lack284

of traffic control systems. Before to try to extend current streets infrastructure285

of a city, it has to be checked if the largest part of its roads are used at their286

maximum traffic flow as much as possible and then to try another expensive287

solution.288

The congestion type presents its particularities for each city not having a289

predefined pattern, but using different information for city infrastructure layout,290

drivers’ behavior and habits etc. together with proper traffic prediction systems,291

it can be realized a generic traffic system which diminishes the congestion. The292

majority of navigators guides the user during its ride based on the decisions293

taken locally not having the global perspective about traffic from the areas that294

are crossed by the vehicle or about the other participants’ decisions. All routing295

applications from cars see the same traffic events in the above scenario and296

all from the same area choose locally the same optimum alternative road. For297

instance, if there is a congestion event in same area of a city, all cars being298

around see it and compute their routes to the same alternative roads moving299

indirectly the congestion to the routes’ roads.300
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Intelligent Traffic Control Systems (ITCS) are designed to reduce the global301

level of congestion in a city, by sensing the city environment through streets in-302

frastructure and the traffic participants counting on Inter-Vehicle-Communication303

(IVC) and Road-to-Vehicle Communication (RVC) in order to exchange data304

about roads congestion level, cars’ speed, cars’ direction, etc. ITCS is able to305

collect complete information about traffic in a large city, because it exchanges306

data with various entities from road infrastructure and traffic participants. In307

order to perform traffic optimization, this system is realized to support three308

phases (traffic monitoring and data collecting; driving conditions perspective309

built using the traffic model; traffic controlling by offering to participants’ feed-310

back/new routes and controlling the World Transportation Laws (WTLs) to311

improve the traffic flow.312

The ITCS’ key entities involved directly in the traffic are cars which are the313

only component from the traffic flow which behaves according to the driver’s314

decisions. Their main target is to collect data from the environment and then to315

exchange it with the other traffic participants and infrastructure. They can col-316

lect data using the sensors from incorporated navigators or using smartphones317

(e.g. GPS, accelerometer, barometer, etc.). Offering data to the system, they318

obtain feedback about traffic in real-time and also new routes suggestions. The319

local decision capability is used only when they do not have possibility to com-320

municate to the other system entities in order to receive a new route in exchange321

of the provided data, instead the global routing decisions are coordinated by322

servers.323

4.2. Smart Cities and Crowds324

As to our knowledge, there are no complete architectures for crowd sensing or325

crowd tracking taking into account processing of the data information extraction326

using Big Data techniques.327

The architecture we presented in the previous section is well suited for crowd328

applications. In order to show this, we detail each of the major parts of the329

architecture and show how they can be mapped for a simple crowd tracking330

system using WiFi scanners.331

Crowd tracking using WiFi scanners is based on the ubiquitousness of smart-332

phones. These devices now have powerful processing, a large variety of sensor333

and communication capabilities. Most importantly for our application they334

almost always have a WiFi module. The WiFi module sends 802.11 packets335

in order to perform communication or auxiliary functions such as searching for336

networks. Because most of these packets contain a device identifier in the form337

of the MAC address, this means a device can be tracked by deploying WiFi338

scanners which record packets [19].339

By looking at the architecture the WiFi scanners represent the sensors which340

gather data about the movements of crowds. This data needs to first be cleaned341

and filtered [20] as not all packets can be considered useful detections of a342

device. This initial cleaning and filtering procedures take place both at the343

scanners themselves in order to minimize bandwidth usage and at the central344
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server that gathers data from all the scanners. This represents the second step345

in the architecture.346

After the data from the WiFi scanners is cleaned, normalized and standard-347

ized form it can be directly correlated with context data. There are numerous348

sources of context data freely available on the Internet. The simplest examples349

of context data sources are schedules or news posts. Both schedules and news350

posts offer a clear reasoning behind certain movements, for instance they can351

explain why a shop area has a lot of movement during work days and almost352

none in the weekend or during an important event.353

Having multiple data sources and a continuous flow of information which354

can be correlated with historical events imposes the need for long term storage.355

Both context and sensor data is stored as well as any correlations between them.356

This data can be then analyzed in real-time or at a set time. The storage and357

data analysis steps match the next steps in our architecture.358

Finally, after the data is analyzed visualization tools need to be used in order359

to create an accessible way of making sense of the data for the individuals that360

need it. In the case of crowd tracking data visualization can take many forms.361

Usually it takes the form of a map where the density of people is shown by362

varying color or intensity. More information can be displayed in the form of a363

city map such as flows of people or events that happen at particular locations.364

Some decisions can skip the visualization step and directly announce the user.365

For instance, if a traffic jam is detected people can be automatically informed366

in order for them to avoid the affected area.367

5. Experiments368

The first use case considers the Intelligent Transportation systems. The369

application model is as follow. The cabs are viewed as clients, which generate370

data with a sporadic schedule in a variety of sizes. The car GPS position is371

recorded every 15 seconds, and by default, the cluster client on the car sends372

the last 4 known positions every minute. However, if a car experiences a loss373

of connectivity, it may exhibit a pause in generating jobs and submit a larger374

data task when connectivity is reestablished. These tasks are considered as375

real-time ones, and the aggregated data is computed as soon as possible. More376

experimental results have been presented in [38].377

A step by step workflow of the implemented application respect the model378

presented in Figure 1, as follows:379

• A client sends position information to Cluster Proxy;380

• The Cluster Proxy writes cab data to distributed file system;381

• The Cluster Proxy encapsulates client data and puts a job in appropriate382

scheduler queue;383

• The scheduler finds available cluster resources and creates a job container384

on a node;385
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• The map process reads data from the distributed file system and processes386

it;387

• The map process aggregates new data with old data from distributed388

database or creates new DB entry if client is at its first report;389

• The map process writes data back on the distributed database environ-390

ment;391

• The job is finished and resources are freed.392

The flow of a request from inception until the end of its processing, from the393

technological point of view is as follows:394

• Client thread reads positions from file and, depending on the profile it is395

assigned at startup, starts acting like a normal, mixed, or batch client;396

• Proxy receives JSON through Camel;397

• Proxy writes the data onto HDFS;398

• Proxy triggers a new Hadoop job and submits it to the appropriate queue;399

• Map process reads input HDFS data;400

• Map reads existing data from HBase and aggregates it with the new data;401

• Map writes end result back to HBase.402

Our experimental setup consists of 4 Virtual Box machines on top of a single403

physical host. The host has a 4-core CPU with hyper threading at 2.4/max 3.4404

GHz, SSD drive and 16 GB of memory. Out of the 4 virtual machines, 3 were405

kept purely for computation and storage needs (Data nodes in the case of HDFS)406

and one was considered a master machine, which ran all the master nodes in407

the Hadoop architecture and also ran the Cluster Proxy module. The virtual408

machines had 20 GB of storage assigned, 2 CPUs, and 3 GB of memory, out of409

which 2 GB were assigned for yarn containers in the case of the slaves.410

The Hadoop Scheduler was configured with he following capacity parameters:411

The batch queue gets 30% of the capacity and may dynamically grow to no more412

than 60%, and the real-time queue has 70% of the capacity, but no more than413

90% if the batch queue is underutilized.414

The experimental results are presented in Figure 2. The experiments were415

run with 1 and 2 queues. We can see that the processing time for batch jobs416

became comparable with time for real-time jobs. In conclusion, we can combine417

these type of jobs, without any performance decreasing. Moreover, by inter-418

preting the average processing time, it is clearly that the performance of the419

cluster is best when the pattern of the input is similar to the one it was de-420

signed for. Although its resource limitations are flexible, they do not cater for421

extreme situations when the load is clearly not balanced. This problem could422
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Figure 2: Comparison of average time for real-time and batch processing for different scenar-
ios. These are total times, including data transfers time, time of data writing in HDFS and
processing time, which require access to large data-sets collected from cabs.

be solved with greater flexibility in resource limitations, as we imposed a rather423

fixed margin of resource distribution in configuring the scheduler.424

Secondly we looked at crowd sensing data. We were interested to see what425

information the architecture can provide given an extensive data set. The data426

set we used was the roma-taxi data set available on Crowdad. This data set427

consists of timestamped GPS data from multiple taxis that travel around the428

city of Rome following their normal routines.429

We imagine a future on which any car and in this case any taxi is equipped430

not only with the necessities of every day transport but with sensors which are431

able to provide all types of data. In order to understand how the data spans432

across the city we measured how popular each individual part of the city is for433

taxis. The data source for our architecture is given by the taxi GPS sensors.434

This data is cleaned and normalized in the second part of the architecture. For435

example, all positions outside the city limits are removed. After the data is436

stored we move to the data analysis. We split the city in a grid of 100x100437

and count the number of items with GPS coordinates in each of the grids. In438

Figure 3 we displayed the results. This is equivalent to the data visualization439

part of our network. Red marks areas with high density and yellow the ones440

with low density.441

Another visualization is available in Figure 4. Here we visualize the same442

data but we set the maximum values as the maximal ones in the data set. This443

permits us to accurately identify the center of the city, the most popular area.444

Using these visualizations an individual can then start the decision processes.445
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Figure 3: Rome - regions visited by taxis.

Automatic systems can monitor the flow of people or cars and can decide which446

areas are over-crowded and need assistance. They can also be used to identify447

expected behavior when a large event such as a concert takes place in town.448

6. Conclusions and Future Work449

In this paper we proposed a generic architecture for data flow handling spe-450

cific for Smart Cities. We describe the functions and components for each step451

and identify specific technologies. Then we provide two use cases on crowd452

management and intelligent transportation systems. We highlight experimental453

results from applications developed using the model proposed in our architec-454

ture. As further work we will analyze self-adaptive optimization methods used455

in this architecture, focusing on data reduction and data cleaning, patter ex-456

traction and data aggregation.457
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