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Abstract. Internet of Things and Smart Cities concept have become
very well spared in the last years especially with the growth of mobile
data bandwidth from 3G to 4G networks. This evolution have led to
a new type of ubiquitous connectivity through devices in an unconven-
tional manner. The old, client-server approach is not anymore feasible,
therefore the Peer-to-Peer concept must be applied. The most common
approach in this case represents Cloud based Peer-to-Peer services. This
paper presents SPIDER Peer-to-Peer overlay flaws analysis and several
requirements for Peer-to-Peer applications considering those flaws.
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1 Introduction

Peer-to-Peer systems has become an emerging research topic in the last years.
Many researchers focuses their attention on Cloud systems based on Peer-to-Peer
overlays. This type of system has many applications in various domains like big-
data dissemination, trust management [13], Internet of Things [5], smart cities
[11], [3] and cyber physical infrastructures [8].

Flaws management in Peer-to-Peer systems represent a major research topic
due do its impact in the systems availability. Therefore, the most important the
capabilities Peer-to-Peer systems are self-adaption and self-reorganization with
minimal resources keeping the functionality of the system.

The Peer-to-Peer overlay that is taken in consideration for this paper is the
bio-inspired SPIDER Peer-to-Peer overlay, developed in University Politehnica
Bucharest and presented in paper [9]. This overlay is inspired from nature, thus
the construction of this overlay is considered to be bio-inspired. The network is
constructed similar to spider webs because it has a fixed number of chains and
a variable number of rings depending on the size of the system.



The Internet of Things is a new era in the field of computer science research
domain. This type of research segment, basically deals with interconnected de-
vices and sensors through a radio network and aggregate the data form those
devices in order to provide information that supports the decision making pro-
cess. One example of the Internet of Things or Internet of Objects is a smart
home surveillance system. In this case, based on the information aggregated from
different sensors like video cameras, door sensors, window sensors, heat sensors
and proximity sensors, the user can be notified in real time in case his house is
been robbed and take further legal actions.

In this paper we analyze several flaws in SPIDER Peer-to-Peer overlay and
the way that the overlay recovers from those flaws. The rest of the paper is
structured in 6 sections. In the second section is presented state of the art review
of existing solutions for cyber-physical infrastructures. Section 3 presents the
flaws of the SPIDER overlay. Section 4 is about application type for the SPIDER
overlay. In this section are presented two type of applications: IoT and live video
streaming. The requirements of this type of applications are presented in section
5. Also in this chapter is realized a mapping of application types, flaws and
requirements. Finally, in section 6 are drawn the conclusions of this research.

2 Related work

Smart cities and cyber-physical infrastructures have become very attractive sub-
jects of research in the past years. Trust management in bio-inspired Peer-to-Peer
systems has many challenges especially coming from the fact that there is no
central authority to trust.

The authors of [12] have presented an emergency situation management sys-
tem based on a hybrid cloud architecture that manages storage and computing
resources for command and control activities. The efficiency of the proposed
approach is based on the fact that the system is aggregating information from
motion sensors correlated with the signal strength from landmark nodes.

In paper [5], the authors present a model for dynamic fault reduction of
devices in an IoT environment. One particular example of this modes takes
the advantage of the door sensor and the heat sensor in order to replace the
functionality of the video camera.

Paper [14] presents TRANSIT an interesting approach for the transition be-
tween different types of mechanisms in live video streaming with respect of per-
formance in an highly dynamic environment from fluctuation point of view. The
proposed approach was evaluated through trace-based workloads. The experi-
mental results showed the fact that the proposed solution offers good resilience.

Another interesting approach is presented in paper [7]. The authors of this
paper evaluated the performances of SPS (Swarm-based Peer-to-Peer Streaming)
for video streaming and proposed OLIVES, an ISP-friendly Peer-to-Peer live
video streaming solution. The obtained figures for the evaluation of the OLIVES
mechanism were obtained through simulation and they demonstrate the fact that
the proposed solution is able to deliver high quality video streams over different



real scenarios. The use cased taken in consideration in this paper were the excess
connection bandwidth and the limited connection bandwidth.

The authors of paper [16] present a very good survey for smart greed commu-
nications. In this paper are described several requirements such: QoS expressed
in terms of latency, bandwidth, interoperability, scalability, security and stan-
dardization.

The authors of paper [1], presents a scheduling algorithm for video broad-
casting with maximum stream rate. The hypothesis on their paper is based on
the fact that each peer in the system interacts only with a few peers in their
neighborhood.

Despite the scientifically contributions of the authors of the papers men-
tioned above, we have presented and evaluated in terms of performance the
auto-recovery mechanisms in case of several flaw scenarios for the SPIDER Peer-
to-Peer overlay with direct impact in real Peer-to-Peer systems.

3 Type of flaws in SPIDER Overlay

This section analyses several types of flaw in the SPIDER Overlay and the
impact of the reorganization of the logical structure of the system in order to
regain functionality.

For a better understanding of the proposed algorithms for flaw recovery we
have decided to use the flowing annotations:

– SPIDER overlay with N nodes organized in nr rings and nc chains : S[nr, nc];
– Number of peers in the SPIDER Overlay : n;
– A node in the SPIDER Overlay named by its coordinates in the overlay

(chain and ring) : ∗[c, r];
– Node N neighbor table : NTable(N);
– Upper neighbor of N : NTable(N).UP ;
– Lower neighbor of N : NTable(N).DOWN ;
– Left neighbor of N : NTable(N).LEFT ;
– Right neighbor of N : NTable(N).RIGHT ;
– Free position in the SPIDER Overlay : free;
– Node in the SPIDER overlay fall : ∗[c, r].FALL;
– Create node with empty neighbor table : NTable(NewNod[c, r]).EMPTY ;
– Delete node form SPIDER Overlay : ∗[c, r].DELETE;
– Entire chain from SPIDER Overlay fall : ∗[∗, r].FALL;
– Entire ring from SPIDER Overlay fall : ∗[c, ∗].FALL.

3.1 Local flaws

This types of flaw affect only locally the structure of the overlay. This means,
that the changes, the overlay has to make are small and the effects of such flaws
are minor. The availability of the overlay in this cases is not affected.

For the analysis of the local flaws we have taken in consideration a SPIDER
Peer-to-Peer overlay with N nodes organized in r rings and c chains. In a full



SPIDER overlay are N = nr × nc nodes. The maximum number of nodes on
a ring is NoNodesRing = nc and the maximum number of nodes on chain is
NoNodesChain = nr.

One node randomly fall Joining and leaving from Peer-to-Peer overlay systems
are very common operations. Therefore, leaving from such system is realized
without any announcements. One of the reasons why nodes leave the overlay
very often might be battery life failure ar loss of radio connectivity.

The algorithm for one node randomly fall is given in Algorithm 1:

Algorithm 1 One node randomly fall

1: Randomly Node X[c, r].FALL
2: NTable(X[c, r + 1]).DOWN = free
3: NTable(X[c, r − 1]).UP = free
4: NTable(X[(c− 1)%nc, r]).UP = free
5: NTable(X[(c + 1)%nc, r).UP = free

The impact in this case is very minor because the structure of the SPIDER
overlay is not affected. The only changes that must be made are only locally
for the neighbors of fallen node. Therefore, there is computed only one opera-
tion/node for four nodes in the overlay resulting a total of 4 operations.

In case of one randomly node fall, the overlay does not need to change in
order to reestablish its structure. Thus, there is no recovery method needed for
this type of flaw.

Two nodes fall from same chain Another flaw taken in consideration in the
SPIDER overlay, might be the falling of two neighbor nodes from the same
chain. This type of flaw might happen when the two nodes have a common
power supply and it falls. Even though, two nodes fall at the same time, this
flaw is still considered to be a local one due to the fact that the structure of the
overlay is not affected and the actions that must be done are only local.

The algorithm for two nodes fall from the same chain is Algorithm 2:

Algorithm 2 Two nodes fall from same chain

X[c, r].FALL and Y [c, r + 1].FALL
2: NTable(Y [c, r + 2]).DOWN = free

NTable(X[c, r − 1]).UP = free
4: NTable(X[(c− 1)%nc, r]).RIGHT = free

NTable(Y [(c− 1)%nc, r + 1]).RIGHT = free
6: NTable(X[(c + 1)%nc, r]).RIGHT = free

NTable(Y [(c + 1)%nc, r + 1]).RIGHT = free



Despite the fact that two nodes from the same chain fall at the same time,
this flaw is considered to be a local one. The structure of the overlay is not
compromised and the operations that must be realized affect only the neighbor
tables neighbor nodes. Therefore, the number of operations in this case increases
with 2 from the case of one randomly node failure.

In terms of auto-recovery, the two node fall from the same chain flaw can be
reduced in fact to a random node failure, thus the structure of the overlay is not
affected and there is no need for the overlay to auto-configure itself.

Two nodes randomly fall This type of flaw appears when two nodes in the
SPIDER overlay fall at the same time from various reasons: power supply failure,
physical malfunction etc. In this case, the flaw is considered to be local because
it does not affect the structure of the overlay. This issue can be easily divided
in 2 random node fall flaw.

When two randomly nodes fall in SPIDER overlay can be used Algorithm 1
for booth nodes resulting an 8 operation process for the overlay.

A particular case of two randomly node failure is two closed nodes from
the same ring failure. In this case the flaw is transformed in the same man-
ner mentioned above with the flowing exception. The number of operations
realized by the SPIDER overlay nodes is calculated as noOfOperations =
oneRandomNodeFailureOperations ∗ 2 − 2 because the left and right neigh-
bors have already set their positions to be free.

3.2 Global flaws

This types of flaws affect the entire overlay structure. This means that the
changes that the overlay has to compute are consistent and the effects of such
flaw are huge. When this type of flaws appear the overlay availability is affected.

In this section are presented two self-organization algorithms for the SPIDER
Peer-to-Peer overlay for critical disaster scenarios:

– Entire Chain lost;
– Entire Ring lost.

Taking in consideration a network formed byN nodes organized in nr rings
and nc chains as shown in Figure 1. Each node is named by its coordinates:
chain and ring. The aim of this section is to present how the SPIDER overlay
reorganizes it self when the nodes form one chain fall all at the same time or
when all the nodes from a ring all fall at the same time. In booth cases the
SPIDER Peer-to-Peer network reorganizes itself in order to be totally functional
again.

Entire Chain lost Scenario 1 Starting from the scenario overview presented with
a n nodes network, the first critical disaster scenario implies the fault of one chain
at the same time. For this scenario it is considered that all nodes N [2, ∗], from
Chain 2 disappears at once along with the chain. Therefore, the overlays have to
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Fig. 1. SPIDER Peer-to-Peer Overlay network organized in nc chains and nr rings.

reconfigure it self from a structure with N nodes and nc chains in one of N −nr
nodes and nc− 1 chains Figure 2.

In this scenario the reorganization consists of updating the neighbor table of
each node on the chain on the left and on the right the lost chain. Thus, every
node on Chain 1 updates its left neighbor to the node on the same Ring and
Chain 3, and every node on Chain 3 updates its right neighbor to the node on
the same Ring and Chain 1.

The impact in this type of flaw is high because about 66% of the nodes of the
overlay are affected and the number of the operations that must be computed
for the reconfiguration of the SPIDER overlay is given by noOfOperations =
2 ∗ noOfRings.

Entire Chain lost Scenario 2 Starting from the scenario overview presented
with a n nodes network, the first critical disaster scenario implies the fault of
one chain at the same time. For this scenario it is considered that nodes N [2, ∗],
from Chain 2 disappears at once but the chain remains. Therefore, the overlays
have to reconfigure it self from a structure with N nodes and nc chains in one if
N − nr nodes and nc chains.

In this scenario the self-adaption technique that the overlay adopts is different
from the ones mentioned the previous section. The main difference consists of
creating 2 new nodes from the remaining ones on the lost chain as seen in
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Fig. 2. SPIDER Overlay self-reorganization in case of chain fall scenario 1. The red
nodes fall at the same time and the SPIDER Overlay becomes a nc− 1 chain overlay
with N − nr nodes.

Figure 3. After the creation of the new nodes the neighbors tables must be
updated.
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Fig. 3. SPIDER Overlay self-reorganization in case of chain fall scenario 2. The red
nodes fall at the same time and the SPIDER Overlay becomes a nc chain overlay with
N − nr nodes. The green nodes are the new nodes created from the renaming ones.

For this scenario we have taken in consideration that the structure of the
overlay remains the same in terms of number of chains. Thus, when an flaw where
all nodes from a chain fall at the same time the SPIDER overlay is reconstructed
by keeping as mush as possible of the initial structure of the overlay. The self-
recovery algorithm used in this case is presented in Algorithm 3:



Algorithm 3 Entire chain fall keeping the chain structure of the overlay

X[∗, r].FALL
NewNode[c, 1] = X[(c− 1)%nc, r]

3: NTable(NewNode(c, 1)).EMPTY
NewNode[c, 2] = X[(c + 1)%nc, r]
NTable(NewNode(c, 1)).EMPTY

6: X[(c− 1)%nc, r].DELETE
X[(c + 1)%nc, r].DELETE
NTable(X[(c− 2)%nc, r − 1]).RIGHT = free

9: NTable(X[(c + 2)%nc, r − 1]).LEFT = free
NTable(X[(c− 1)%nc, r − 1]).UP = free
NTable(X[(c + 1)%nc, r − 1]).UP = free

12: for i = 1; i < nr − 1; i + + do
if i <= 2 then

NTable(X[(c− 1)%nc, i]).LEFT = X[c, i]
15: NTable(X[(c + 1)%nc, i]).RIGHT = X[c, i]

NTable(X[c, i]).LEFT = X[(c + 1)%nc, i]
NTable(X[c, i]).LEFT = X[(c− 1)%nc, i]

18: else
NTable(X[(c− 1)%nc, i]).LEFT = free
NTable(X[(c + 1)%nc, i]).RIGHT = free

21: end if
end for
NTable(X[c, 1]).UP = X[c, 2]

24: NTable(X[c, 2]).UP = free
NTable(X[c, 2]).DOWN = X[c, 1]

The impact in this scenario is the highest. Not only, the number of up-
dates in this scenario is very high but there must be created 2 new nodes on
the lost chain. After this construction, a complex neighbor table update sched-
ule must be effectuated. The number of operations in this scenario is given by
noOfOperations = newNodeCreation(1)∗2+deleteExistingNodes(1)∗2+4+
2 ∗ newNodesUpdates(4) + (nr− 3)nodeUpdateOfTheNeighborChains(2) + 3.

Entire ring fall Another frequent flaw in th SPIDER overlay might be the entire
ring lost is depicted in Figure 4. This flaw happen when all the nodes from
specific ring fall at the same time. This type of flaw is considered to be a global
one because the structure of the overlay is affected and the overlay have to
auto-recover in a manner that changes its structure.

For this scenario we are taking in consideration a SPIDER overlay network
with N nodes constructed by nc chains and nr rings. If a ring from the overlay
fall at the same time the overlay auto-adapts by making the upper and bottom
connections of the fallen nodes. Therefore in this case the algorithm that might
be uses is presented in Algorithm 4.



Chain 2

Chain 1

Chain 3

Chain 
nc

Chain 2

Chain 1

Chain 3

Chain 
nc

Fig. 4. SPIDER Overlay self-reorganization in case of ring fall. The red nodes fall at
the same time and the SPIDER Overlay becomes a nc chain, nr− 1 rings overlay with
N − nc nodes.

Algorithm 4 Entire ring fall

S[nr, nc] with n nodes
X[c, ∗].FALL
for i = 0; i < nc; i + + do

NTable(X[c, r + i + 1]).DOWN = X[c, r − i− 1]
5: NTable(X[c, r − i− 1]).UP = X[c, r + i + 1]

end for
nr = nr − 1

This type of flaw is considered a global flow because the overlay has to change
its structure. The number of operations needed to be executed in order to auto-
recover the SPIDER overlay in this case of flaw is given by c ∗ 2, because for
each chain there must be realized 2 connections between the upper neighbors to
the lower ones and all the way around.

4 Type of applications of SPIDER Overlay

4.1 Live video streaming

A particular type of application that is SPIDER peer-to-peer overlay based is
live video streaming for video surveillance of a vegetables Farm. The use case of
vegetable farming is coming from ClueFarm project [10], developed in University
of Politehnica Bucharest.

The use case taken in consideration is a farm formed by 3 farming zone, and
each zone consisting in 3 or 4 green-houses. The overlay in this case consists of
3 chains representing the number of farming zones and 4 rings representing the
maxim number of green-houses in each zone.

The flaws that might happen in this particular use case are:



Fig. 5. IoT support use case. Smart-home sensor monitoring. 5 room (1. Kitchen, 2.
Living room, 3. Bathroom, 4. First bedroom, 5. Second bedroom).

– One random node fall - in case of a camera malfunction;
– Two random nodes fall - in case weather phenomenon that might affect the

green house;
– Two random nodes fall - in case of weather phenomenon that might affect

the green houses;
– Entire chain fall - in case farm zones reorganization.

Another use case of live video streaming presented also in paper [8] is river
pollution monitoring. This use case is based on [10] developed in University of
Politehnica from Bucharest. This use case is based on an logical overlay develop
based on the SPIDER overlay. The overlay is formed by 4 chains representing
the number of rivers in a specific geographical area, that is monitored and 2 rings
representing the number of the observation points placed o that river. Physically
the number of observation points vary from the number of tributaries of each
river that is monitored.

In this use case the possible flaws that might appear are:

– One random node fall - in case of a observation point failure;
– Two random nodes fall - in case of severe weather phenomenon that might

affect the observation points, or blackouts;
– Two random nodes fall - in case of severe weather phenomenon that might

affect the observation points or blackouts;
– Entire chain fall - in case of natural hazards like earthquakes or extremely

sever weather conditions.

4.2 IoT support for smart houses

Taking in consideration the high interest of the research communities in the
Internet of Things, we present a use case for IoT support based on the SPIDER
overlay.



The underlay of the IoT support use case is presented in Figure 5.
Therefore, the number of nodes in the overlay is given by the total number

of sensors in the house. In this particular case the total number of nodes is 19
organized in a SPIDER overlay of 5 rings and 5 chains. The number of chains
is given by the number of chambers in the overlay and the number of chains is
given by the maximum number of sensors in a room.

The formed SPIDER overlay is presented in Figure 6.

 Temperature sensor

Window sensor

     Humidity sensor

Smoke sensor

     Proximity sensor

3

4
5

Fig. 6. SPIDER Overlay for the IoT support use case formed by 5 chains and 5 rings.
Each ring represents a room and on each chain is only one type of sensor.

Taking in consideration the IoT support use case mentioned above we can
present several potential flaws. Therefore, the most common flaw that might
happen in a smart home Peer-to-Peer system is the malfunction of one or several
sensors. This flaw appears when the sensors have no energy left in their batteries.
In this case, the SPIDER Peer-to-Peer overlay flaws, that matches this use case,
are the one random node fall or 2 nodes fall. This type of flaws can be frequent
and the recovery from this state is realized by replacing the broken sensors with
new ones.

Another flaw that might appear in this use case is the entire ring fall. This
might happen all the sensors in a room falls at the same time, due to when due
to a major problem.

5 Requirements for Peer-to-Peer applications

The requirements of the live video streaming and IoT Peer-to-Peer applications
are presented in Table 1.
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Table 1. Peer-to-Peer overlay application requirements

Application
type/requirements

Live video streaming
IoT
Support

Physical infrastructure Cable/WiFi WiFi

Transport protocol UDP UDP/TCP

Bandwidth High Low

Self-recovery from local flaws Yes Yes

Self-recovery from global flaws Yes Yes

Throughput High High

5.1 Application type - Flaw mapping

The mapping of the application types to the flaws self-recovery features of the
SPIDER overlay are presented in Table 2.

5.2 Flaw analysis experimental results

The number of operations for each local flaw is presented in Figure 7.
The number of operations for each global flaw is presented in Figure 8.
The most important observation is the fact that SPIDER overlays organized

on rings are fault safer than SPIDER overlays organized on chains.

6 Conclusion and future work

In this paper we have presented several possible flaws of the SPIDER Peer-to-
Peer overlay and the way the system auto-recovers from those state. Also were
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Fig. 8. Number of operations needed for SPIDER self-adaption in case of global flaws.

presented 4 algorithms for fault self-recovery. We have stated the fact that local
flaws does not affect the structure of the SPIDER overlay and the only actions



Table 2. Application type - flaw mapping

Application type Live video
streaming

IoT Support

One random node fault Yes Yes

Two nodes fall from the same chain fault Yes Yes

Two random nodes fault Yes Yes

Two nodes fall from the same ring fault Yes Yes

Entire chain fault - scenario 1 Yes Yes

Entire chain fault - scenario 2 No No

Entire ring fall No Yes

that must be executed is the update of the neighbor tables. In case of global
flaws the structure of the overlay is affected and it must self-reconstruct. In case
of entire chain fall the overlay will be reconstructed with a decremented number
of chains by 1. The same behavior is happening when an entire ring falls, but
the recovery process is more efficient.

In future research we will focus on researching redundancy and replication
techniques for SPIDER overlay in order to achieve availability.
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