
Virtual Machine Cluster Mobility in Inter-Cloud

Platforms

Stelios Sotiriadis

The Edward Rogers Sr. Department of Electrical and Computer Engineering,
University of Toronto, Bahen Centre for Information Technology

St. George Campus, 40, Toronto, ON M5S 2E4, Canada

e-mail: s.sotiriadis@utoronto.ca

Nik Bessis

Department of Computing, Edge Hill University,
St Helens Rd, Ormskirk

Lancashire L39 4QP, UK

e-mail: Nik.Bessis@edgehill.ac.uk

Euripides G.M. Petrakis

Department of Electronic and Computer Engineering,
Technical University of Crete

Chania, Crete, GR-73100

e-mail: euripides@intelligence.tuc.gr

Cristiana Amza

The Edward Rogers Sr. Department of Electrical and Computer Engineering,
University of Toronto, Bahen Centre for Information Technology

St. George Campus, 40, Toronto, ON M5S 2E4, Canada

e-mail: amza@ece.utoronto.ca

Catalin Negru

University Politehnica of Bucharest, Romania,
Splaiul Independentei 313, Bucharest 060042

e-mail: catalin.negru@cs.pub.ro

Mariana Mocanu

University Politehnica of Bucharest, Romania,
Splaiul Independentei 313, Bucharest 060042

e-mail: mariana.mocanu@cs.pub.ro

Preprint submitted to Future Generation Computer Systems March 8, 2016



Abstract

Modern cloud computing applications developed from different interoperable
services that are interfacing with each other in a loose coupling approach.
This work proposes the concept of the Virtual Machine (VM) cluster mi-
gration, meaning that services could be migrated to various clouds based on
different constraints such as computational resources and better economical
offerings. Since cloud services are instantiated as VMs, an application can
be seen as a cluster of VMs that integrate its functionality. We focus on
the VM cluster migration by exploring a more sophisticated method with
regards to VM network configurations. In particular, networks are hard to
managed because their internal setup is changed after a migration, and this is
related with the configuration parameters during the re-instantiation to the
new cloud platform. To address such issue, we introduce a Software Defined
Networking (SDN) service that breaks the problem of network configuration
into tractable pieces and involves virtual bridges instead of references to static
endpoints. The architecture is modular, it is based on the SDN OpenFlow
protocol and allows VMs to be paired in cluster groups that communicate
with each other independently of the cloud platform that are deployed. The
experimental analysis demonstrates migrations of VM clusters and provides
a detailed discussion of service performance for different cases.

Keywords: Cloud computing, Cloud portability, Cloud service mobility,
Software Defined Architecture, Future Internet Service Migration, VM
Cluster Migration

1. Introduction

Cloud computing platforms (e.g. OpenStack1) offers to Internet users an
on demand solution to utilize remote resources. It is comprised by three lay-
ers; these are (a) the applications and services, (b) the computing resources
(that are virtualized) and (c) the connectivity (including virtual networks).
Over the years, various cloud models have been developed to cover the variety
of cloud users needs (22), such as the Infrastructure, Platform and Software
as a Service (IaaS, PaaS and SaaS). The evolution of these, characterizes the
so-called future Internet (FI) concept that allows development of cloud appli-

1https://www.openstack.org

2



cations from services belonging to different owners and developers that is also
related with the inter-operation of multiple and different technologies (4). In
particular, developers build applications by utilizing on-the-self cloud ser-
vices encapsulating common functionalities (e.g. user authentication, data
storage and context data management etc.), instead of re-engineering and
implementing services from scratch.

The FI model has been characterized particularly useful for a large com-
munity of developers and Internet entrepreneurs for Internet-enabled innova-
tion specialized in cloud solutions that use enablers. These are cloud services
that provide open specifications, based on a cloud-centric service environ-
ment as in (1) and are available for utilization through APIs (e.g. RESTFul
based). While these solutions highlight innovation and promotion of a new
easy-going development method, software engineering processes are becom-
ing more and more complex. This is because such enablers have distinct
features that impact several different research fields as follows.

• Executed over virtualized hardware and other software stacks that can
be highly scalable according to the needs of the users (e.g. elastic-
ity in terms of resources). For instance the users can increase their
computational capacities according to the users’ demand.

• Share common physical resources with other cloud applications or ser-
vices, thus supporting multi-tenancy environments. For instance an
enabler could be utilized by more than one cloud applications, thus it
requires to have high quality of service.

• Provide interfaces using flexible and easy to use APIs that allow com-
bination of services, remote utilization and management.

• Utilize third party services that are decentralized and involve a multi-
layer structure e.g. belonging to different cloud platforms or owned by
different providers. For instance, a service could be integrated upon an-
other service that is already developed by a collection of other services
and so on.

• Are interoperable but could be based on different semantics and infor-
mation models with regards to communication schemas (JSON, XML
etc.) or communication protocols.

3



In this study we focus on the connectivity layer of applications and ser-
vices in clouds and inter-clouds with the aim to explore the way in which
software defined networks (SDN) could assist in the direction of efficient VM
migration among resources for communicating applications. This involves
multiple resources from different cloud providers so to create distributed
virtual computing clusters as in (7) and (27). In a cloud system, Virtual
Machines (VMs) are configured by the cloud platform to operate under the
datacenter setup, thus making portability to other systems a really challeng-
ing issue. In particular, cloud networking is one of the aspects that highlights
important issues in VMs migration due to the internal network configuration.
For example a running VM includes static MAC addresses, floating IPs and
other setup that is assigned by the cloud platform. In case of a VM mi-
gration a new configuration will happen and existing setup will be lost. The
case becomes worst when a cluster of VMs are migrated, thus reconfiguration
causes VM links to be lost.

Having said that, in this work we focus on the portability of VM clusters
that are multiple VMs communicating with each other, and we address the
following challenges.

• How to easily configure VM cloud networks without worrying for their
static configurations? This is because communication setup in VMs is
realized by means of static IPs.

• How to dynamically change network configurations dynamically?

To answer these challenges, we propose an SDN architecture that is cost-
effective, manageable, agile and allows re-configuration of VMs on the fly
by decoupling the cloud platform network setup from the VMs. The pro-
posed solution is based on OpenFlow2 that is an open standards-based and
vendor-neutral protocol. SDN targets specially on the separation of the (a)
control plane of the network that is responsible for decisions making with
regards to how packets travel through the network (could be happened re-
motely) from (b) the data plane of the network that is responsible for moving
packets from one place to another and is local based. OpenFlow provides a
remote controller with the capability to modify the behavior of network de-
vices, through a well-defined ”forwarding instruction set” 3. Typically, cloud

2http://archive.openflow.org
3http://archive.openflow.org/wp/learnmore/

4



platforms (e.g. OpenStack) have OpenFlow support with regards to their
internal virtual networks.

A technical problem is that VM endpoints are static and refer to the
floating IP addresses assigned by the cloud itself and used by the cloud
application developers in various parts within their source code. So, in case
of a VM migration the developers will need to adapt internal code sources
to match the configurations of the new hosting cloud platform. The SDN
architecture allows cloud services to be flexible and dynamic with regards
to their network configurations that could be in turn modified in a vigorous
way during system run-time. The solution couples VMs as communities by
utilizing internal bridges that are paired to their static IPs and could be
changed on demand in case of a VM migration (thus using the SDN control
plane).

According to this discussion this work contribution is on the VM cluster
migration using an SDN architecture and includes the following.

(C.I) We separate the VM internal network setup from the cloud platform
network configuration that is assigned by the cloud platform it self.
By this way, VMs could be easily migrated to different clouds over-
coming the issues provoked by static setup (e.g. IPs, MAC addresses
etc.).

(C.II) We design an adaptive architecture for redirection of traffic among
VMs when migration occurs. The SDN architecture allows adapta-
tions of the VM traffic that is automatically configured by a VM
cluster migration module. This is responsible for collecting network
configurations (from the new cloud platform) and to redirect the
VM traffic according to the new endpoints. We provide an experi-
mental analysis of VM migrations in OpenStack cloud platforms to
evaluate our solution.

In Section 2 we present the research problem and the motivation of this
work, in Section 3 the analysis of the related approaches and the significance
of our work, in Section 4 we detail the conceptual model for inter-cloud VM
migration and in Section 5 the SDN architecture for VM migration in clouds
and inter-clouds by focusing on the OpenStack platform. Then, in Section
6 we demonstrate the performance analysis of OpenStack related use cases
and the evaluation of the architectural concepts. Finally, in Section 7 we
conclude our study with the key findings and the future research steps.

5



2. Problem description and Motivation

This section specifies the research problem of this work by demonstrating
a use case example. A service called x service is deployed in an OpenStack
platform, so it has a network configuration according to the platform network
service (e.g. Neutron or Quantum based on the OpenStack version) including
an endpoint address (characterized by two IPs that are the local and floating
IPs). The x service provides an API that is accessible by its floating IP
address so other applications can access it using the HTTP protocol (for
example to fetch data). Let us assume that a new developed application
utilizes the x service and within the programming code the developer includes
the endpoint of the service in the form http://IP/API. In a non-migration
environment the traffic is managed by the cloud platform and the endpoint
remains static during the service lifecycle.

In case of switching to a VM cluster migration environment, meaning that
(a) the application it self could move to different cloud location or (b) the
services that integrate it could move to different location, it changes affect
directly the operation of the service. In particular, the developer should
adjust code sources manually and possible restart services and servers to
apply changes, an action that affects downtimes and QoS either from the
application or the service point of view. This also involves violation of the
service level agreements (SLAs) between (a) user and application and (b)
application and service. To solve this issue we introduce an SDN architecture
that is flexible and agile and allows elimination of public endpoints in terms
of static IPs and internal MAC addresses.

This work is motivated by the interoperability and portability scenarios
of the 2014 Cloud Standards Customer Council4 that includes the following
points with regards to cloud users.

• They could switch between providers on demand.

• They could use services from multiple providers to integrate a new one.

• They could link cloud services in a multilayer format.

• They could link in-house capabilities to cloud services.

4http://www.cloud-council.org/CSCC-Cloud-Interoperability-and-Portability.pdf

6



We are also motivated by the opportunities of the FI concept that allows
development of innovative applications from services belonging to different
owners and developers called as cloud enablers. In particular, developers
build applications by utilizing on-the-self services offered as cloud enablers
encapsulating common functionalities (e.g. user authentication, data storage,
context data management etc.), instead of re-engineering and implementing
services from scratch. These are usually deployed in cloud systems, pro-
vide open specification and are available for utilization through APIs (e.g.
RESTFul based). While these solutions highlight innovation and promotion
of a new easy-going development method, software engineering processes are
becoming more and more complex.

This work focuses on the management of cloud service cluster migration,
and we introduce the notion of ”live portability” in large scale cloud sys-
tems. The assumption is that VMs have local logical network topologies and
communicate using static endpoints. We are thus focus on the need to de-
fine a framework to hide the abstraction of network using a service oriented
network subscription service. The SDN architecture allows adaptations in
the VM traffic on request that is automatically configured by a VM cluster
migration module that is responsible for collecting network configurations
(from the new cloud platform) and to redirect the VM traffic according to
the new endpoints.

3. Review of related approaches

This section presents the related works with regards to cloud migration
and on the usage of software defined networks in cloud systems to address
related issues.

In (15), authors presented a ”live ensemble migration solution”that op-
erates as a network operators management tool. The work utilizes recent
advances in SDN, with ”LIME” a solution that supports network migration
of VMs. The authors demonstrate how to migrate an entire network in a
way that ”both supports arbitrary controller application software and effi-
ciently orchestrates the migration process” (15). The work of (11) is based on
”LIME” for network migration of VMs. It is designed to support transparent
migration of VMs and switches as well as a technique that clones VMs in
order to minimize performance disruptions. This allows the transformation
of multiple physical switches to a single virtual that does not affect traffic

7



and rules updating during the migration. This work expands the work of
(15) by including an improved algorithm a discussion on the evaluation part.

The work of (2) includes the VMFlock that is a migration service that
allows cross-datacenter transfer of a group of VMs and their instantiation
based on their images. The solution utilizes data deduplication that is a
specialized technique for data compression to eliminate duplicate copies of
repeating data. This is executed ”within the VMFlock to be migrated and
between the VMFlock and the data already present at the destination dat-
acenter” (2). It also supports data transfer prioritization and acceleration
of VMs and application startup. The authors claim that it provides an in-
crementally scalable and high performance migration service. (11) authors
suggest that this work does not include virtual network support and the
benefits derives from this approach.

In (6) authors present an approach that allows linked VMs to be co-
located within a cluster system on the same physical host to reduce commu-
nication costs. Their solution is based on live gang migration, and to reduce
the overhead of concurrently migrating multiple co-located VMs they uti-
lize data deduplication. Similarly to (2) the work does not consider virtual
network benefits during migration.

In (10), authors present a study to highlight that cannot be a one-to-one
mapping between virtual abstractions and their actual physical implemen-
tations. They also present research directions that include (a) development
of more advanced mapping techniques and (b) to restrict the API of SDN
so to provide safe-to-map abstractions only. In (30), authors present an ex-
perimental live migration performance study that focuses on the overheads
of virtual clusters and explore different virtual clusters migration strategies.
The describe a framework called VC-Migration (virtual cluster migration)
to manage the migration process. Similarly to (6; 2) this work does focus
on the SDN and its benefits (11). Further, in (20) authors consider a mech-
anism that allows migration of an entire virtual network from an initial to
the final mapping. They present ”scheduling algorithms for virtual network
migrations that minimize the disruption to the current data traffic and the
overhead traffic in the migration process”(20) . However, according to (11)
the nature of this work is different since the solution aims to change the
topology to direct traffic to a new location.

In (16), authors present router grafting, ”where parts of a router are
seamlessly removed from one router and merged into another by allowing
grafting a border gateway protocol (BGP) session and the underlying link

8



from one router to another, or between blades in a cluster-based router”(16).
Similar to (20), and according to (11) the solution aims to change the topol-
ogy to direct traffic to a new location. In (8), authors propose XenFlow
that is a hybrid virtualization system utilizes Xen and OpenFlow technolo-
gies. XenFlow goals are to provide (a) a flexible virtual network migration,
(b) a strong isolation of virtual networks to avoid deny of service caused
by interference of other virtual networks and (c) to offer inter-network and
intra-network QoS provisioning by a consistent resource controller (8). In
(17), authors present the design and implementation of a network virtual-
ization solution for multi-tenant datacenters. They describe the design and
implementation of a network virtualization platform, that has been deployed
in production environments. Authors of (11) suggest that these approaches
work for software switches and routers exclusively.

In (23), authors ”take a step toward the goal of generalizing elasticity by
observing that a broadly deployed class of software is particularly well suited
to dynamic scale” so as networks become increasingly virtualized, FreeFlow
addresses a need for elasticity in middleboxes, without introducing the config-
uration complexity of running a cluster of independent middleboxes (23). In
(9), authors present a work for migrating VMs along with their connections.
Authors suggest that this has numerous benefits in data centers, including
improved load balancing, energy consumption optimization (power savings)
as well as optimization of performance and utilization. However, directly
migrating individual components can lead to inconsistencies and overloads
of resources (9). In their work they show that by following ”an ordering
over changes to the virtual network, we can perform this migration efficiently
while providing strong guarantees on the ability to meet constraints on band-
width and loop-freedom” (9). The work of (11) suggests that previous works
require application source-code modifications that rely on some topological
assumptions.

In (5) authors present Remus that is a solution for extremely high degree
of fault tolerance. The authors claim that ”a running system can transpar-
ently continue execution on an alternate physical host in the face of failure
with only seconds of downtime, while completely preserving host state such
as active network connections” (5). The solution supports cloning of VMs
but not virtual networks. In (12) authors present SWAN that enables an ef-
ficient and flexible inter-DC (datacenter) WAN by coordinating the sending
rates of services and centrally configuring the network data plane by focusing
on updates of a network policy without causing transient congestion (12). In

9



(13) authors present B4 that is a private WAN connecting Google data cen-
ters across the planet. This has a number of unique characteristics such as
massive bandwidth requirements, elastic traffic demand and full control over
the edge servers and network.

In (3) authors present the design, implementation, and evaluation of a
system for supporting the transparent, live wide-area migration of virtual
machines that use local storage for their persistent state. in (19) authors
presents zUpdate, to perform congestion-free network updates under asyn-
chronous switch and traffic matrix changes. The work formulates ”the update
problem using a network model and apply our model to a variety of repre-
sentative update scenarios in DCNs” (19). These works, similar to (12; 9)
present ways to update a network policy without causing transient conges-
tion.

In (18), authors present SnowFlock that uses VM fork. The work en-
ables ”the straightforward creation and efficient deployment of many tasks
demanding swift instantiation of stateful workers in a cloud environment,
e.g. excess load handling, opportunistic job placement, or parallel comput-
ing” (18). In (24) authors present a system for virtual machine live migration
that includes disk images. The approach proposes using copy-on-write im-
ages to derive users’ custom images from a root image. We are driven by
the works in (26), (28) where authors present an inter-cloud job scheduling
framework that implements policies to optimize performance of participating
clouds. The framework, named as Inter-Cloud Meta-Scheduling (ICMS), is
based on a novel message exchange mechanism to allow optimization of job
scheduling metrics. The resulting system offers improved flexibility, robust-
ness and decentralization. In (25) we presented an inter-cloud bridge system
that is elastic, easy to be upgraded and managed. This work is based on this
prototype that is composed not only from heterogeneous cloud platforms but
also from independent cloud services. Finally, we detailed an experimental
analysis to show interactions with various heterogeneous cloud platforms.

Different from aforementioned solutions this work focuses on the problem
of transparent VM migration among different clouds, where live migration
is not available and by highlighting the issue of heterogeneity and seamless
integration of VM clusters without changing their network configurations.
We are motivated by the (14) and (11) that points out the SDN benefits over
traditional solutions including:

(i) Effective management of the network layer with regards to the inflexi-

10



bility and complexity of the traditional network. The proposed solution
will provide advances in programmable network interfaces.

(ii) Virtualization provokes cloud datacenter scalability issues, especially
when more and more VMs are created and migration is a key require-
ment for better cluster management. We focus on providing automa-
tized VM group migration among clouds without disrupting communi-
cation among VMs.

(iii) Utilization of dynamic networks that can be configured and become
adaptable according to changing needs. This includes re-configuration
on-the-fly according to the cloud platform setup.

We further differentiate this work from the internal cluster migration
including process/memory and suspend/resume migration as the works pre-
sented in (21). We aim to the problem of inter-cloud VM cluster migration
and on the way that VM clusters could be moved from one place to another
and re-instantiated without loosing their connections. To achieve this we
(a) separate the VMs internal network configurations from the cloud plat-
form network configuration that is assigned by the cloud platform and (b)
we design an SDN architecture allows adaptations in the VM traffic on re-
quest that is automatically configured by a VM cluster migration module
that is responsible for collecting network configurations (from the new cloud
platform) and to redirect the VM traffic according to the new endpoints.

4. Conceptualization of the live portability in cloud computing sys-
tems

This section presents the conceptual solution of the live portability that
is defined as follows.

Live portability is the process of moving cloud entities, that represent cloud
applications and/or services, are composed by different sub-entities (3rd cloud
party services and tools), are configured to integrate as a whole system and
belonging to same or different physical spaces, from one location to another
based on certain properties such as SLAs and QoS constraints.

To demonstrate a live portability system we present an example case. In
particular an application called App is deployed in CloudB and is composed
by three services namely as SA1, SA2 and SC1 that is a service belonging
to a different cloud provider (CloudC). The assumption is that we need a
live migration process when the application owner realizes that a new cloud

11



provider (CloudB is now available and could host the App by offering better
terms (e.g. better pricing model and improved QoS or in case of a need of
more resources) and also provides the same service SA2 at improved cost. Let
us assume that the owner decides to move App as well as SA1 (that it will
become SB1 from cloud to cloud.

To achieve this inter-cloud mobility we developed the inter-cloud bridge
system introduced in (26) and implemented in (25) that encompasses a collec-
tion of services aiming to ensure modularity and management of key compo-
nents of an interoperable large scale cloud system composed by heterogeneous
clouds. The services designed on a modular basis of interacting RESTFul
compliant cloud services. Each module is implemented as a separate service
that could be executed in a decentralized topology thus modules could by
easily replaced and/or updated with flexible configuration according to the
needs of the inter-cloud administrator.

Initially, a user can access the inter-cloud registry using the Identity
Management Service and configures the mediation service using the registry.
Then, the Mediation Service connects to the configured clouds and collects
data regarding generated authentication tokens, images and snapshot, fla-
vors and resource usage information. The collected information is forwarded
to the interacted modules (Context Broker, CEP etc.). Also, the Exter-
nal Third Party Cloud Service includes monitoring of applications composed
from services belonging to the inter-cloud bridge system. Further, it provides
an endpoint for configuring an inter-cloud market place for subscriptions to
inter-cloud offerings. More details are presented in (25). In this work we
introduce the SDN module that allows the extra feature of dynamic network
configurations and described in the next section.

5. Software Defined Architecture for VM Cluster Migration

This section presents the SDN VM cluster migration architecture for mov-
ing a cluster of coupled VMs to different cloud platforms. We utilize an SDN
networks solution to isolate the communication between VMs participating in
the cluster so to achieve nested mobility of VMs in a transparent way among
heterogeneous cloud platforms. The architecture is flexible and includes an
internal VM configuration based on two physical networks as follows:

(i) The ”data network” for VM data traffic based on virtual local area
networks among VMs (e.g. VLAN among ethernet interfaces). The
assumption here is that the physical switches support such functionality.

12



(ii) The ”management network” for associating VM hosts to static end-
points that are their URIs assigned by the cloud platforms (e.g. floating
IP addresses for remote access). The solution will allow updates of VM
endpoints on-the-fly according to the cloud platform setup.

Having said that, next we present (a) the VM cluster migration solution
that expands the inter-cloud bridge system (Section 5.1, (b) the extensibil-
ity of this solution in OpenStack, (Section 5.2) and (c) the VM migration
between two OpenStack systems (Section 5.3).

5.1. VM Cluster Migration Solution

This section presents the SDN architecture that develops the internal
communication links among VMs. Figure 1 demonstrates the basic solution
of the SDN architecture for VM cluster migration.

VM	Application	
Layer

VM	Control	
Layer

Cloud	Platform	
Layer

Cloud	Applications	
and	services

Inter-Cloud	SDN	
Control

Network	Devices

API

Control Data Plane 
Interface

Inter-Cloud	
Mediation	Service

API Inter-Cloud	
Bridge	System

API

Get cloud 
configurations

Inter-Cloud	
Migration	Service

Triggers 
migration

VM

user

owns configures

clouda

cloudb
Connect
(API) Connect 

(API)

is tenant

Figure 1: The solution of the SDN architecture for VM cluster migration

The user is a tenant in both clouds and owns a VM, for example a VM in
clouda) and configures the inter-cloud bridge system including authentication
credentials as well as it triggers migrations using the inter-cloud migration
service. The architecture separates the SDN solution that includes the VM
application, control and cloud platform layers and the inter-cloud migration

13



solution that includes the inter-cloud bridge system that encloses the me-
diation service. Each module is implemented as a separate service under a
different endpoint. The SDN architecture includes the following new compo-
nents.

(1) The inter-cloud bridge system that is extended to include the following.

(a) The mediation service that connects to the cloud platforms using
their APIs (e.g. OpenStack API). The service collects information
about VMs (using HTTP calls) from internal services and it triggers
actions e.g. create new VMs as well as configurations (assigning
security rules and new floating IP to cloud instances).

(b) The migration service that includes the process of moving a running
instance (and its initial configuration e.g. pre-installed software)
from a cloud to cloud while maintaining its hardware, software and
network configurations as in (29). After migration the private cloud
includes a ready running instance in respect to setup, rules, security
group and a public IP.

(2) The application layer defines the static internal endpoints for the cloud
applications and services that communicate with the cloud control layer
using an SDN configuration. These represent the URI references that
could be used by the developers within their source code.

(3) The control layer includes the inter-cloud SDN control module that is
dynamically and automatically configured by the inter-cloud mediation
service, on-demand and on-the-fly, performing static endpoint updates.
Each time a new VM is generated to a different cloud platform, the
mediation service automatically updates the endpoints by making a call
to this service.

(4) The cloud platform layer defines the various network devices such as
switches and routers that communicate with the inter-cloud SDN con-
troller using the OpenFlow protocol. The layer includes the virtual net-
work abstraction of the cloud platform it self.

Figure 2 demonstrates the flow of the HTTP traffic of a VM that follows
the proposed SDN architecture including structuring the SDN application
and control layer (as presented in Section 1) and includes the following.

(1) The virtual interface that is the internal URI (static endpoint for devel-
opers).

14



(2) The encapsulated interface that is the external URI (dynamic endpoint
assigned by the cloud platforms).

(3) The inter-cloud bridge and bond levels and the VM physical interfaces.

The assumption is that multiple VMs follow the same configuration and
are paired in cluster groups, that are identified by their inter-cloud bridge
(icbr) interface. Also, the applications/services refer to internal URIs while
the external URIs defined by the cloud platforms are dynamically re-configured
on change.

Virtual	interface
(vint0)

Encapsulated	
interface	(enc0) External	URIInternal	URI

Inter-Cloud	Bridge	(icbr0)

Inter-Cloud	Bond	 (icbond0)

VM	physical	interfaces	(eht0)

Traffic flow

Static endpoint

Dynamic endpoint

Application/Services

Figure 2: The flow of the HTTP traffic in the internal VM interfaces according to the
proposed SDN architecture

We further detail the levels of interfaces for Figure 2 as follows.

(i) Internal URI: The vint0 is the internal interface of the VM that defines
the local endpoint IP of the service. Other applications and/or services
that require communicating with the VM will direct traffic to this in-
terface. This also represent the internal static endpoint of the VM that
is independent of the cloud platform setup and configured by the user
(in the inter-cloud SDN Control module).

(ii) External URI: The enc0 is the encapsulation inteface that defines the
dynamic URI of the VM it self. In case of of a VM mobility to a different
cloud platform this is the endpoint required to be changed according
to the new assignment. The prototype demonstrates how encapsulated
interfaces could be changed dynamically according to the floating IPs
of the new cloud platforms. We include the following network virtual-
ization methods:

15



(i) Virtual extensible LAN (VXLAN) that utilizes UDP so all routers
properly distribute traffic by using a hashing over the 5 tuple that
include the UDP source and destination ports.

(ii) Generic routing encapsulation (GRE) tunnelling for point-to-point
links over the Internet for cases where IP packets do not contain
the information necessary to construct a 5-tuple.

(iii) Inter-cloud bridge: The icbr0 is the interface to create a virtual bridge
among the inter-cloud VM networks. Using this interface the VM clus-
ter members redirect their traffic in the inter-cloud system.

(iv) Inter-cloud bond: The icbond0 is the network bonding that exists
within the same cloud platform for optimized throughput and redun-
dancy. The bond is utilized in cases of failures (e.g. active passive
when a NIC goes down), aggregated VMs (e.g. multiple NICs act as
one to increase throughput) and load balancing cases (for optimized
traffic distribution among VMs).

(v) VM interfaces: The eth0 etc. are the physical interfaces of the VM for
traffic redirection to the Internet channel. The VM traffic is forwarded
to the interfaces from the inter-cloud bridge to the Internet.

5.2. OpenStack VM Cluster Migration Solution

In this section we design an OpenStack platform VM cluster migration
based on the architecture presented in Section 5.1. Figure 3 demonstrates
an OpenStack VXLAN setup according to a typical OpenStack topology5.
Each VM includes the layered structure presented in previous section and
includes (a) the static endpoint(s) (in the vi0 interface) that are the reference
URIs used by application/service developers and (b) the dynamic endpoints
(enc0 ) that change according to the inter-cloud bridge system. The traffic
is directed from internal network (vi0 ) to encapsulated network (enc0 ) that
in turn forwards it to the VM physical interface (eth0 ) using the inter-cloud
bridge (icbr0 ).

Then, it is handled by the OpenStack bridge (brint) and throughout var-
ious interfaces (intbr-eth1 and phybr-eth1 ) is redirected to the node physical
host interface (eth1 ) that communicated with the network node. The lat-
ter, uses the eth1 interface to redirect internal traffic to compute nodes (e.g.
Compute node 1) and eth0 for internet connection. It should be mentioned,

5http://docs.openstack.org

16



that the network node is configured to use two virtual bridges the br-ex and
br-eth1. The network tap provides a way to access the data flowing across
the inter-cloud network. Also, it includes an external gateway (eg) that is
a portal between virtual OpenStack network and the internet, and a virtual
router that provides a routing framework so the host machine to act as a
typical hardware router over a virtual local area network.

VM

tap

brint

brint-eth1

phbr-eth1

br-eth1eth1

vi0

enc0 enc...

icbr0

eth0

tap

brint brint-eth1

phbr-eth1

br-eth1 eth1br-eth1

eth0

eg eg

vr vr vr

tap Network 
Server Compute

Server

OpenStack
Deployment of VMs

Internet traffic

VM

vi0

enc0 enc...

icbr0

eth0

Figure 3: Analysis of the OpenStack VXLAN setup

5.3. VM Mobility Case

To describe the mobility case, we present an example where a VM is
migrated among two cloud platforms. The inter-cloud bridge system is re-
sponsible for the migration process, while the SDN inter-cloud controller dy-
namically changes the external endpoints. Figure 4 demonstrates a mobility

17



of a VM where the URIa is the static and URIb is the dynamic endpoint. The
assumption is that the service is utilized by an external third party service
that has been pre-configured to communicate using the SDN solution.

vint0

Platform1 VMa

enc0

icbr0

icbond0

eth1 eth0

External	URI

vint0

Platform1 VMb

enc0

icbr0

icbond0

eth1 eth0

Internal	
URI External	URI

Cloud
Platrorm1

Internal	URI

Cloud
Platrorm2

Internet traffic

After mobility

Internet traffic

Inter-Cloud	SDN	
Controller

Updates 
endpoints

Get endpointsURIa

External 
Service

URIa

URId

Bound to URIa

Bound to URIa

URIb

URIc

OpenFlow: Update 
External nested

URI from
URIb to URIc

1

2

3 URIe

Inter-Cloud	
Bridge	System

Figure 4: A mobility of a VM where the URIa is the static and URIb is the dynamic
endpoint data

In case of the inter-cloud mobility from Platform1VMa to Platform2VMa

the service is re-instantiated and the new floating IP assigned by the cloud is
configured automatically to the new instance. Thus is this case the following
actions are taking place.

(1) The inter-cloud SDN controller collects the URIb endpoint from the
Platform1VMa. The inter-cloud bridge system operates on top of the
controller and triggers updates on change.

(2) Then the controller, by using the OpenFlow protocol, it updates the
endpoint list (in this case URIb it becomes URIc). It should be mentioned
that endpoints URIa remains the same before and after migration.

(3) The controller updates the external service URI endpoint (URId) and
the traffic flows as normal from static URIe to dynamic URId, and then
to the migrated VM and to the dynamic URIb to URIa.

18



It should be mentioned that during the update process a delay and/or
failure in the communication could be observed. The experimental section
presents a detailed discussion of such issues and possible configurations to
minimize service downtimes.

6. Performance Evaluation

This sections presents the performance evaluation of various mobility
cases of the SDN architecture. We detail a number of experimental cases
to explore benchmarks as follows.

(I) The inter-cloud mobility times for VM migration among cloud plat-
forms. For this experiment we utilize an OpenStack inter-cloud to
demonstrate the various steps of migration and the total times re-
quired to create a new running instance (that will be a clone of the
original VM). We also migrate different sizes of VM images in order
to explore how VM size affects mobility times.

(II) The SDN controller configuration times with regards to the following.

(a) The time to create the SDN bond among VMs.
(b) The time to update the SDN controller (when a migration has

occurred).
(c) The downtime during the update process.

(III) The migration of a VM cluster (4 VMs) within the inter-cloud system
by measuring features as previously.

6.1. Inter-Cloud Mobility Benchmarks

This experiment presents the inter-cloud mobility benchmarks with re-
gards to the time for a VM to be migrated between different systems as
in (29). To achieve this, we separate inter-cloud mobility into a number of
processes including the following.

(i) Source cloud authentication: The inter-cloud bridge system connects
to the source cloud platform (the cloud where the running VM resides)
in order to get security token on demand using the cloud tenant in-
formation (username, password and tenant id). The process connects
automatically to the source platform and uses the tenant token to col-
lect internal cloud information (running VM instances, images etc.).

19



(ii) Image creation: The system creates a new image of the selected run-
ning instance (VM) that the user requires to move to the target cloud.
It should be mentioned that this process allows multiple VMs images
creation at the same time.

(iii) Image download: This is the process to download the VM images locally
to the inter-cloud bridge system and to assign a unique identifier to the
image. The process is executed automatically.

(iv) Target cloud authentication: This allows connectivity with any target
clouds (the clouds where the images need to be loaded) that is part
of the inter-cloud bridge system and authentication using the tenant
information.

(v) Image upload: The process to upload the image(s) from local space to
the desired target cloud platform.

(vi) Security setup: The process to configure any security parameters (e.g.
public keys that could be exported and imported among cloud plat-
forms) that are associated with the images.

(vii) Instantiation: The process of creating the new instances in the target
cloud platforms based on the cloud platform setup.

(viii) Network setup: The inter-cloud bridge system updates the network
configurations according to the target cloud setup. The new endpoints
are collected by the inter-cloud bridge systems on demand and infor-
mation is shared with the inter-cloud SDN controller. In turn, this
module updates the VM virtual networks and performs a sanity check
to ensure connectivity. In case of a multiple VM migration the module
updates the VM cluster migration solution following the model of Fig-
ure 1. The system makes adaptions to the external URIs that is the
enc0 encapsulation interface that defines the dynamic URI of the VM
it self.

Figure 5 demonstrates the different times in milliseconds (ms) for each
process of the service to execute a VM migration. We present two cases,
migrating a VM of (a) 800 MB size and (b) 1060.94 MB. Based on this figure
we can define the benchmark measurements of this study. The most time
is spent during image download (40 to 50 seconds) and upload (around 10
seconds) phases, a process that is directly related with bandwidth speed. In
addition, the instantiation phase is also time consuming as it requires an
average of 8 seconds. The security setup and network configurations are low
time consuming actions (less than 4 seconds). Finally, cloud authentication

20



0 10000 20000 30000 40000 50000

Source Cloud authentication

Image Creation

Image Download

Target Cloud authentication

Image Upload

Security setup

Instantiation

Network setup

Time (ms)

VM migration times

1060.94 MB 800 ΜΒ

Figure 5: VM Migration times

is related with the time required for an HTTP get request. It should be
mentioned that the total migration time (from source to target cloud) of the
800 MB VM image is 64.92 seconds and of the 1060.94 is 79.97 seconds.

6.2. SDN Controller Configuration Times

This section presents the performance of the SDN controller with regards
to (a) the time to create the SDN bond among VMs, (b) the time to update
the SDN controller (when a migration has occurred) and (c) the downtime
during the update process.

6.2.1. Linking time

We define as linking time the time period requiring to create the internal
network VM configurations as presented in Figure 2 in both VMs. We present
the linking times of 2 VMs in Figure 6. We run 10 pairing experiments,
where each of which creates the internal and external SDN networks and we
measure the time required for the VMs to configure the vint0, enc0, icbr0,
icbond0 and the eth0 interfaces. It is shown that the average linking time is

21



63 milliseconds, a time that compared to the migration values of Figure 5 is
significantly low.

6.2.2. Update time

We define as update time the time period requiring to update the network
configurations when a VM migration has been occurred. This includes update
of the encapsulated interface with regards to the external endpoint that is
the new floating IP allocated by the OpenStack system. The experimental
analysis shows that the average update process is 26.5 ms, a value that if we
compare it with the times required to create the network configurations of a
new VM (as shown in network setup measurements of Figure 5 is significantly
low. Figure 6 demonstrates the Update times for migration of two VMs.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

T
im

e (
m

s)

Experiment

Link, Update, Downtime Times

Host 1 Link Time Host 2 Link Time Host 1 Update Time
Host 2 Update Time Host 1 Downtime Host 2 Downtime

Figure 6: VMs linking times of two VMs

6.2.3. Downtime

We define as downtime the time period during of the update time that
the communication between the VM cluster is temporarily broken due to the
endpoint update process. In particular, each time the inter-cloud mediation
service updates the encapsulated interface, the SDN controller recreates a
new interface and it assigns to it the new endpoint. The average downtime
is measure as 5.3 milliseconds, that could be considered as a tiny timeframe.

22



In cases of a whole new VM cluster migration the downtime is insignificant,
however in cases of a VM migration where one or more VMs of the cluster are
migrated and others stay online this will provoke a downtime to the online
VMs. Figure 6 demonstrates the downtimes for migration of two VMs.

6.3. VM Cluster Migration

This section includes the migration and configuration of a centralized
four VMs cluster in an OpenStack system. The cluster is centralized as all
VMs reside at the same cloud platform and have similar functionalities (e.g.
migration of a database cluster). Figure 7 demonstrates a use case of VM
cluster migration (of 3000 MB image size) and the various configuration steps
including the following data.

0
2
4
6
8
10
12
14
16
18
20

0

5000

10000

15000

20000

25000

T
im

e (
m

s)

T
im

e (
m

s)

Migration of four VMs among two OpenStack  
platforms

1 VM without SDN 4 VMs without SDN
4 VMs with SDN Downtime

Figure 7: VM Migration times

23



(i) One VM without the SDN configuration: In this case we migrate one
VM without SDN to serve as a fundamental benchmark.

(ii) Four VMs without the SDN configuration: In this case we migrate four
VMs between two OpenStack systems and we measure the average time
of all VMs as a whole.

(iii) Four VMs with the SDN configuration: In this case we migrate four
VMs and we perform the SDN configuration.

(iv) Downtime: We measure the downtime during SDN setup (demonstrated
by the right y axis).

Based on this observation we conclude to the following results. The down-
time is considered significant low compared to the times spent from Open-
Stack for configuration of the various steps. The difference between four
VMs with and without SDN is almost similar, thus SDN does not affect the
performance of the overall inter-cloud mediation service.

7. Conclusions

This work focused on designing cloud applications using an SDN architec-
ture to eliminate static endpoints and to allow dynamic connectivity among
VMs. A cloud application can communicate with third party services in order
to integrate its whole functionality. Thus, in case of moving the application
to a different platform (e.g. due to new requirements or better SLAs) the
migration process becomes a hurdle. Another similar case is the migration
of multi cluster deployment of a system (e.g. distributed databases) in a
cloud provider. The migration of such systems requires re-configuration of
the network settings (e.g. interfaces, MAC addresses etc.) of the VMs, an
action that decomposes the VM cluster. We suggested that by braking down
the network configuration into tractable components we can setup network
step by step. The proposed architecture is flexible and dynamic and allows
easily reconfiguration of VMs without loosing their internal connections. The
experimental analysis demonstrates a series of different cases so to extract
benchmark features for future studies.

This includes inter-cloud mobility times for VM migration among Open-
Stack platforms to demonstrate the various steps of migration and the total
times required to create a new running instance (that will be a clone of the
original VM). We also migrate different sizes of VM images in order to ex-
plore how VM size affects migration times. This includes the SDN controller

24



configuration times with regards to the time to create the SDN bond among
VMs, the times to update the SDN controller (when a migration has oc-
curred) and the downtime during the update process. We also will focus on
the live portability use case where we will utilize a load balancing solution
to migrate a cluster of VMs among clouds. Also, we aim to explore different
experimental configurations and demonstrate heterogeneous VM migrations.

8. Acknowledgment

This work was supported DataWay - Real-time Data Processing Platform
for Smart Cities: Making sense of Big Data grant of the Romanian National
Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project
number PN-II-RU-TE-2014-4-2731.

9. References

[1] C. S. A. Mladenow, N. Kryvinska. Towards cloud-centric service environ-
ments. Springer, The Society of Service Science, Journal of Service Science
Research, 4(2):213–234, 2012.

[2] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu. Vmflock: Virtual
machine co-migration for the cloud. In Proceedings of the 20th International
Symposium on High Performance Distributed Computing, HPDC ’11, pages
159–170, New York, NY, USA, 2011. ACM.

[3] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg. Live wide-area
migration of virtual machines including local persistent state. In Proceedings
of the 3rd International Conference on Virtual Execution Environments, VEE
’07, pages 169–179, New York, NY, USA, 2007. ACM.

[4] A. Castiglione, F. Palmieri, U. Fiore, A. Castiglione, and A. De Santis. Mod-
eling energy-efficient secure communications in multi-mode wireless mobile
devices. J. Comput. Syst. Sci., 81(8):1464–1478, Dec. 2015.

[5] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield.
Remus: High availability via asynchronous virtual machine replication. In
Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, NSDI’08, pages 161–174, Berkeley, CA, USA, 2008. USENIX
Association.

25



[6] U. Deshpande, X. Wang, and K. Gopalan. Live gang migration of virtual
machines. In Proceedings of the 20th International Symposium on High Per-
formance Distributed Computing, HPDC ’11, pages 135–146, New York, NY,
USA, 2011. ACM.

[7] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione. Interconnecting feder-
ated clouds by using publish-subscribe service. Cluster Computing, 16(4):887–
903, 2013.

[8] D. Ferrazani Mattos and O. Muniz Bandeira Duarte. Xenflow: Seamless
migration primitive and quality of service for virtual networks. In Global
Communications Conference (GLOBECOM), 2014 IEEE, pages 2326–2331,
Dec 2014.

[9] S. Ghorbani and M. Caesar. Walk the line: Consistent network updates with
bandwidth guarantees. In Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, HotSDN ’12, pages 67–72, New York, NY, USA,
2012. ACM.

[10] S. Ghorbani and B. Godfrey. Towards correct network virtualization. SIG-
COMM Comput. Commun. Rev., 44(4):–, Aug. 2014.

[11] S. Ghorbani, C. Schlesinger, M. Monaco, E. Keller, M. Caesar, J. Rexford,
and D. Walker. Transparent, live migration of a software-defined network. In
Proceedings of the ACM Symposium on Cloud Computing, SOCC ’14, pages
3:1–3:14, New York, NY, USA, 2014. ACM.

[12] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. Achieving high utilization with software-driven wan. In Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM
’13, pages 15–26, New York, NY, USA, 2013. ACM.

[13] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat.
B4: Experience with a globally-deployed software defined wan. SIGCOMM
Comput. Commun. Rev., 43(4):3–14, Aug. 2013.

[14] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li. Software-defined net-
working: State of the art and research challenges. CoRR, abs/1406.0124,
2014.

[15] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford. Live migration of an entire
network (and its hosts). In Proceedings of the 11th ACM Workshop on Hot

26



Topics in Networks, HotNets-XI, pages 109–114, New York, NY, USA, 2012.
ACM.

[16] E. Keller, J. Rexford, and J. Van Der Merwe. Seamless bgp migration with
router grafting. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI’10, pages 16–16, Berkeley, CA,
USA, 2010. USENIX Association.

[17] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Ful-
ton, I. Ganichev, J. Gross, N. Gude, P. Ingram, E. Jackson, A. Lambeth,
R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,
S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip, and
R. Zhang. Network virtualization in multi-tenant datacenters. In Proceed-
ings of the 11th USENIX Conference on Networked Systems Design and Im-
plementation, NSDI’14, pages 203–216, Berkeley, CA, USA, 2014. USENIX
Association.

[18] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M. Rumble,
E. de Lara, M. Brudno, and M. Satyanarayanan. Snowflock: Rapid virtual
machine cloning for cloud computing. In Proceedings of the 4th ACM European
Conference on Computer Systems, EuroSys ’09, pages 1–12, New York, NY,
USA, 2009. ACM.

[19] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz. zupdate:
Updating data center networks with zero loss. SIGCOMM Comput. Commun.
Rev., 43(4):411–422, Aug. 2013.

[20] S. Lo, m. Ammar, and E. Zegura. Design and analysis of schedules for virtual
network migration. In IFIP Networking Conference, 2013, pages 1–9, May
2013.

[21] V. Medina and J. M. Garćıa. A survey of migration mechanisms of virtual
machines. ACM Comput. Surv., 46(3):30:1–30:33, Jan. 2014.

[22] D. Penzel, N. Kryvinska, C. Strauss, and M. Gregu. The future of cloud com-
puting: A swot analysis and predictions of development. In Future Internet
of Things and Cloud (FiCloud), 2015 3rd International Conference on, pages
391–397, Aug 2015.

[23] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/merge: Sys-
tem support for elastic execution in virtual middleboxes. In Proceedings of the
10th USENIX Conference on Networked Systems Design and Implementation,
nsdi’13, pages 227–240, Berkeley, CA, USA, 2013. USENIX Association.

27



[24] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and M. Rosen-
blum. Optimizing the migration of virtual computers. SIGOPS Oper. Syst.
Rev., 36(SI):377–390, Dec. 2002.

[25] S. Sotiriadis and N. Bessis. An inter-cloud bridge system for heterogeneous
cloud platforms. Future Generation Computer Systems, (0):–, 2015.

[26] S. Sotiriadis, N. Bessis, A. Anjum, and R. Buyya. An inter-
cloud meta-scheduling (icms) simulation framework: Architecture
and evaluation. Services Computing, IEEE Transactions on, DOI:
10.1109/TSC.2015.2399312(99):1–1, 2015.

[27] S. Sotiriadis, N. Bessis, and N. Antonopoulos. Towards inter-cloud schedulers:
A survey of meta-scheduling approaches. In Proceedings of the 2011 Inter-
national Conference on P2P, Parallel, Grid, Cloud and Internet Computing,
3PGCIC ’11, pages 59–66, Washington, DC, USA, 2011. IEEE Computer
Society.

[28] S. Sotiriadis, N. Bessis, P. Kuonen, and N. Antonopoulos. The inter-cloud
meta-scheduling (icms) framework. In Proceedings of the 2013 IEEE 27th
International Conference on Advanced Information Networking and Applica-
tions, AINA ’13, pages 64–73, Washington, DC, USA, 2013. IEEE Computer
Society.

[29] L. Vacanas, S. Sotiriadis, and E. Petrakis. Implementing the cloud software to
data approach for openstack environments. Adaptive Resource Management
and Scheduling for Cloud Computing, Held in conjunction with PODC-2015,
2015.

[30] K. Ye, X. Jiang, R. Ma, and F. Yan. Vc-migration: Live migration of virtual
clusters in the cloud. In Proceedings of the 2012 ACM/IEEE 13th Interna-
tional Conference on Grid Computing, GRID ’12, pages 209–218, Washington,
DC, USA, 2012. IEEE Computer Society.

28


