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Introduction 
Small sensors and actuators are more and more 

used nowadays to extract knowledge about water-
related problems. With the dawn of the Internet of 
Things (IoT), devices ranging from sensors 
monitoring the water pressure or leaks, to actuators, 
to even building, connect over the Internet. 
Infrastructures are being built to connect and collect 
data from the most diverse kind of devices 
monitoring water-related resources. Platforms such 
as InfluxData are constructed for information 
analytics, with a specialization on water  

 

 
management. Examples of IoT water-management 
applications include: 

x Smart irrigation with IoT: Smart irrigation 
replaces existing irrigation controllers (which are just 
simple timers), with cloud enabled smart irrigation 
controllers that apply water based on plant need 
(i.e., type of crop) and weather. Moreover, with flow 
sensors and real-time alerts, property managers and 
landscape contractors can be alerted the second 
something goes awry, which if your site has any 
significant landscape at all, you know this can 
happen quite frequently. Examples of such systems: 
HydroPoint’s WeatherTRAK® smart irrigation system 
(Khelifa et al., 2015); 
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Abstract 
Water is an essential, limited and sensitive life resource, and it is 
in focus of various persons or groups, from simple citizens to 
decision persons at country/world level, and, of course, also of 
scientists from different research fields. Water resource dynamic 
consequences exceed watersheds or water systems. Due to the 
support of new technologies, researches like people, water, and 
climate: adaptation and resilience in agricultural watersheds, 
developed a better understanding of the processes that link 
global-scale climate and socioeconomic drivers to regional-scale 
responses in land use decision-making, water quality, and water 
quantity. Recently, Cloud Computing emerged as the de facto 
state-of-the-art for data analytics. We require optimized 
platforms to co-locate data and computation and therefore 
mitigate the network bottleneck when moving data. However, as 
data may not be equally distributed across sites and since 
intermediate data are required to be aggregated to produce 
results, Cloud computing platforms may suffer severe 
performance degradation in such distributed settings. Thus, in 
our research activities we intend to address smart data 
extraction for water resource management, to explore new data 
distribution techniques and decision support systems that can 
co-operatively deal with distributed big data processing for 
single and multiple concurrent applications. Another challenging 
issue is to provide real-time analysis of shared and distributed 
data. While most real-time processing engines can efficiently 
benefit of the un-debatable performance of in-memory 
processing, they don’t consider the data management during 
data processing (i.e. where to store the intermediate temporary 
data) or dependencies in-between processed data, which are 
common in environmental applications. In this case, 
mathematical models represent suitable instruments used in 
prediction and prognosis model for different parameters (i.e. 
water quality index), which are important for decision support 
systems for water resource management. 

Keywords: water resources, smart data, big data, Cloud 
computing, decision support systems 

Rezumat. Procesarea inteligentă a datelor pentru 
managementul resurselor de apă 
Apa este o resursă esențială, limitată și sensibilă pentru viață, 
resursele de apă fiind în centrul atenției diferitelor persoane sau 
grupuri, de la simpli cetățeni la persoane de decizie la nivel de 
țară/nivel mondial, un interes ridicat fiind arătat și de oameni de 
știință din diferite domenii de cercetare. Consecințele dinamice a 
managementului resurselor de apă au ca punct central depășirea 
capacitații bazinelor de captare. Datorită suportului noilor tehnologii 
legate de adaptarea și capacitatea de adaptare în bazine 
hidrografice agricole, s-a dezvoltat o mai buna înțelegere a 
proceselor care se leagă de climă și a proceselor socio-economice în 
managementul resurselor de apă și oferă autorităților la scară 
globală răspunsuri ce se pot aplica la scară regională în luarea 
deciziilor cu privire la calitatea apei și cantitatea de apă folosită 
pentru consum. Recent, Cloud Computing a apărut ca un standard 
de facto pentru analiza de date. Necesitatea platformelor optimizate 
pentru a localiza date și a oferi resurse de calcul este o cerință 
impusă în serviciile de management global al resurselor de apă. Cu 
toate acestea, deoarece datele nu pot fi distribuite în mod egal și 
deoarece sunt necesare date intermediare să fie agregate pentru a 
produce rezultate corecte, platformele de calcul Cloud pot suferi o 
degradare de performanță severă. Astfel, în activitățile noastre de 
cercetare ne propunem să abordăm o extragere de date inteligentă 
pentru gestionarea resurselor de apă, pentru a explora noi tehnici 
de distribuție a datelor și a sistemelor de suport decizional, care pot 
coopera în prelucrarea datelor mari distribuite pentru aplicații 
concurente. O altă problemă dificilă este crearea unei analize în 
timp real a datelor partajate și distribuite. Cele mai multe platforme 
de procesare în timp real pot oferă performanțe atunci când datele 
sunt ținute în memorie, dar ele nu consideră managementul datelor 
în timpul procesării acestora sau a dependențelor în între datele 
prelucrate , care sunt comune în aplicații de mediu. In acest caz, 
modelele matematice reprezintă instrumente adecvate folosite în 
modelul de predicție și prognoză pentru diferiți parametri (indicele 
de calitate a apei), care sunt importante pentru sistemele de 
asistare a deciziilor în procesele de gestionare a resurselor de apă. 

Cuvinte-cheie: resurse de apă, procesare inteligentă a datelor, 
date masive, sisteme distribuite, sisteme de luare a deciziilor 
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x Smart water meters with IoT: A smart water 
meter (device) can collect usage data and 
communicate it wirelessly to the water utility 
company, where analytics software reports the results 
on a web site to view. Examples of such systems: 
One of the largest pilot programs of smart meters 
and related water management software platforms (a 
smart water management network) is in San 
Francisco. Water consumption is measured hourly 
and data is transmitted on a wireless basis to the 
utility four times a day. Both the utility and customers 
can track use. A pilot program in the East Bay 
Municipal Water District, which targets mostly single-
family homes, provides a daily update of hour-by-
hour consumption via a website. Consumers can be 
alerted, for example, by email or phone call, when 
water use exceeds a specified limit or when a meter 
indicates continuous running water for 24 hours. A 
customer can further view the data as it comes in, as 
well as compare their numbers with past use and city 
averages. The usage data should eventually result in 
alerts for leaks (by comparing how the readings in 
consecutive water meters) (Friess, 2013); 

x Determining water demand in a city: One of 
the crucial challenges of water management as well 
as conservation in a city is to determine the amount 
of water that any city is going to utilize during the 
next day. This can be calculated to precision with 
the use of predictive analytics. Recently, IoT was 
employed for this purpose, where dedicated 
platforms keep a track on the history of water 
consumption in the city on any given day. Based on 
the historical data collected and analyzed by 
predictive analytics and combined with the 
consideration of special events, holidays, as well as 
the weather in that city, we can determine the 
amount of water that the entire population is going 
to consume in one day. The Internet of Things 
technology also helps in scheduling the maintenance 
as well as shutdown of pumps on a regular basis. 
There are optimization techniques which can 
beforehand convey to the residents of a city 
regarding the unavailability of water during any 
point of time. This helps the water regulation 
authorities in not only meeting the adequate water 
demands in a city; rather it also aids in the 
conservation of resources and energy. 

In this paper, we analyze some of the decision 
factors when you are faced with decisions related to 
how to construct a water-management ICT support 
tool. The solutions presented in the first part of the 
paper are a collection of exiting models and 
technologies. In the second past, a Cloud-based 
application is presented. This application compute 
the Universal Water Quality Index (UWQI) 
(Boyacioglu, 2007). 

 

Data integration, aggregation, and 
representation 

The first decision relates to making decisions on 
the data formats and support to use, for the data 
you intend to collect. For water management, 
models can be derived from analysis and 
observation of the natural world (just by look at the 
water-related phenomenon).  However, such models 
are prone to potential misunderstanding if they do 
not adhere to standards. Thus, a better approach is 
to rely on an open and integrated planning 
processes such as Integrated Water Resource 
Management (IWRM) (Voinov et al., 2008). 

In water management, researchers and 
practitioners tend to agree that each case use best a 
tool or different model - it is simply up to the 
planner to select the best approach. In this sense, 
the Global Water Partnership, one of the largest 
forum crated around the IWRM concept, crated a 
set of policies and approaches they recommend to 
practitioners interested in the implementation of 
IWRM. Their recommendation includes references to 
a set of Management Instruments, which are the 
proposed techniques to control water supply and 
demand. For these techniques, many models have 
been designed to facilitate integration between 
various aspects of catchment hydrology, including 
surface water, groundwater, vegetation, ecology, 
and even agricultural economics. Examples include 
NELUP (O'Callaghan, 1995), MIKE SHE (Refsgaard et 
al., 1995), and TOPOG (Vertessy et al., 1994). Such 
types of model are excellent for water resource 
assessments and impact on the environment, but in 
most cases, they do not link directly to the wider 
social, cultural, and economic aspects of water 
management. Which is why researchers have 
proposed decision support systems (DSSs), as 
complementary tools to models. A DSS is a means of 
collecting data from many sources to inform a 
decision. Information can include experimental or 
survey data, output from models or, where data is 
scarce, and expert knowledge. 

DSS tools and models were proposed in various 
studies about water monitoring/management (De 
Zwart, 1995), and are usually specifically tailored for 
one problem, to sustain the case being presented in 
each work. For example, diffuse of pollution from 
nutrients, namely nitrogen and phosphorus was 
presented in a vast study in (Munafo et al., 2005). 
As the article specifies, the number of chemicals 
released into surface water bodies is extremely 
large; their dynamics are complex and it is difficult 
to measure the global impact. The European 
inventory of existing chemical substance (EINECS) 
identified more than 100,000 chemicals, but there is 
not satisfactory knowledge of their routes of entry 
into surface waters yet. Furthermore, EINECS is 
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likely to have underestimated the number of 
pollutants, for it does not consider all by-products 
deriving from physical, chemical, and biological 
degradation (Geiss et al., 1992). The management 
of non-point pollution of rivers and its prevention 
are priority factors in water monitoring and 
restoration programs. 

The scientific community proposed many models 
for depicting the dynamics of pollutants coming from 
diffuse sources. In fact, most of them can be 
grouped into two broad categories: statistical 
models and physically based models. A major 
drawback of statistical or physically based models 
for non-point pollution is the large amount of data 
required both as input and for calibration and 
validation of the model. Other possible problems are 
long computing time, complexity related to the 
development of appropriate models, and the highly 
skilled operators required for using them. More 
recently, the potential non-point pollution index 
(PNPI) was proposed as s a GIS-based, watershed-
scale tool designed using multi-criteria technique to 
pollutant dynamics and water quality (Munafo et al., 
2005). The method for calculating PNPI follows an 
approach quite like the environmental impact 
assessment. The pressure exerted on water bodies 
by diffuse pollution coming from land units is 
expressed as a function of three indicators: land 
use, runoff, and distance from the river network. 
They are calculated from land use data, geological 
maps and a digital elevation model (DEM). The 
weights given to different land uses and to the three 
indicators were set per experts’ evaluations and 
allow calculation of the value of the PNPI for each 
node of a grid representing the watershed; the 
higher the PNPI of the cell, the greater the potential 
impact on the river network. 

Among the tools to support hydrological 
modelling and decision-making, Geographical 
Information System (GIS) is highly regarded as an 
important instrument for data management. For 
example, even when surface water and groundwater 
are modelled separately, GIS can support an 
integration between them (Facchi et al., 2004). For 
example, modelling software like Mike BASIN is 
selected often by different authors to model surface 
water. Groundwater models are also available are 
available in the ASM (Aquifer Simulation Model) 
software. When both surface water and 
groundwater need to be modeled together, both for 
quantity and quality evaluations, such tools (the 
complexity comes from the integration of the models 
these two provide) can be by means of a GIS, to 
support efficient data management. Such an 
approach was demonstrated in (Jain et al., 2004), 
where authors developed a process oriented 
distributed rainfall runoff model which used a GIS to 
generate model inputs in terms of land use, slope, 

soil and rainfall. This allowed the model to handle 
catchment heterogeneity.  

Similarly, the GIS software ArcView, developed 
by ESRI, combines several capabilities for mapping 
systems along with the ability to analyze geographic 
locations and the information linked to those 
locations. A powerful feature of ArcView GIS is the 
ability to carry out mathematical and logical 
operations on spatial data. Furthermore, tabular 
data from Arcview dBASE files can be created or 
manipulated using Microsoft Excel, which is useful in 
facilitating the integration of ArcView with other 
software.  

MIKE BASIN, developed by DHI software, is an 
extension of ArcView, which uses GIS information as 
a basis of a water resources evaluation (Hughes and 
Liu, 2008). Crucially, MIKE BASIN adds to ArcView 
the capability to deal with temporal data, in addition 
to the spatial data stored in the GIS. MIKE BASIN is 
a water resources management tool which is based 
on the basin-wide representation of water 
availability. Rivers and their main tributaries are 
represented mathematically by a network of 
branches and nodes. Nodes are point locations, 
where it is assumed that water enters or leaves the 
network through extractions, return flow and runoff. 
These may be confluences, diversions, locations 
where certain water activities occur (such as water 
offtake points for irrigation or a water supply), or 
important locations where model results are 
required. Rainfall-runoff modelling can be carried 
out in MIKE BASIN using NAM (Nedbor Afstromnings 
Model), a lumped, conceptual rainfall-runoff model 
suitable for modelling rainfall-runoff processes on 
the catchment scale. This can be used to simulate 
overland water flows, for example. 

Aquifer Simulation Model for Microsoft Windows, 
is a complete two-dimensional groundwater flow and 
transport model. ASM include the instruments to 
model either confined, and unconfined aquifers. For 
modelling an aquifer as a confined aquifer, the 
governing equations are based on transmissivity 
parameters, which are fixed because the saturated 
depth is fixed (when the water level in the aquifer 
drops below the confining layer, the saturated depth 
of the aquifer decreases, as does the transmissivity; 
thus, strictly speaking, the model is fundamentally 
flawed in this manner). For a steady-state model, 
the groundwater levels do not change once the 
solution has converged. Therefore, in such a model 
the transmissivity is effectively fixed, meaning the 
basic assumptions are still valid, however the data 
used to define the model should be based on 
measured or calibrated transmissivity and not on 
measured hydraulic conductivity. This also means 
that only steady-state analysis can be carried out 
with this model. 



 
 

Smart Data for ICT-based Water Management 

76 forumgeografic.ro 

But the power of such modeling tools can be use 
when combined. As a pioneer case study, authors in 
(Ireson, 2006) proposed a methodology for loosely-
coupling the MIKE BASIN with the ASM provided 
water models, and demonstrate a series of what-if 
scenarios for the effect of dams on the groundwater. 

 

Collecting the data 
 In Europe, participation in water resource 

planning gained a new institutional stature with the 
Water Framework Directive (WFD). This calls for the 
active involvement of all interested parties in the 
implementation process and particularly in the 
production, revision, and updating of River Basin 
Management Plans (Article 14; Council of the 
European Communities, see (EC, 2000). Planning 
methods that combine public participation with 
decision-making functions are therefore increasingly 
in demand (EC, 2002).  For example, several 
hydrography databases exist for the EU water 
studies that include rivers and lakes coverages. The 
catchments have been derived from a hierarchical 
river network, together with climate data provided 
for over 5k stations in all EU member states, 
collected by the monitoring agriculture with remote 
sensing (MARS) project (Vossen, 1995). The two 
main climatic variables are precipitation (average, 
maximum 24 h rainfall, number of rain days, 
average snowfall, number of snowfall and snow 
cover days) and temperature (average, maximum, 
minimum, absolute monthly maximum and 
minimum, number of frost days). Other climate 
attributes include, relative humidity, air pressure, 
atmospheric pressure, bright sunshine, 
evapotranspiration, wind speed, and cloud cover.  

Many more such initiatives were developed in the 
last years. The Waterkeeper Alliance, for example, 
developed programs (e.g., Riverkeeper, Lakekeeper, 
Baykeeper, and Coastkeeper) for ecosystem and 
water quality protection and enhancement, with 
major pilots in USA, Australia, India, Canada and the 
Russian Federation (Mohn, 2006). The URI 
Watershed Watch Program produces quality data 
from over 200 monitoring sites statewide (and 
citizens are encouraged to participate as active data 
readers). Produced and processed in certified 
laboratories, this information is used by the Rhode 
Island Department of Environmental Management 
for assessing the State’s waters, as well as by 
municipal governments, associations, consulting 
firms and residents for more effective management 
of local resources. Similarly, Florida’s LAKEWATCH 
program is one of the largest US lake monitoring 
programs in the nation with over 1800 trained 
citizens monitoring 600+ lakes, rivers and coastal 
sites in more than 40 counties. Volunteers take 

samples to collection sites located in 38 counties 
(Canfield et al., 2002). 

Normally the use of water for productive 
activities is prohibited in the domestic distribution 
systems in many parts of the globe, but because 
these activities sustain in some places the rural 
poor, users withdraw water for unauthorized 
productive uses or alternatively water designated for 
irrigation is used to meet their domestic needs (Van 
der Hoek, 1999), leading to low availability and low 
quality of water. The use of “potable” water for all 
activities has become common, and other sources 
such as rainwater harvesting or grey-water re-use 
have been largely ignored in much of Latin America, 
for example (Restrepo, 2005). One factor that 
impedes decision making to improve water services 
in rural areas is the lack and inconsistency of 
information on water consumption, availability and 
quality (Roa et al., 2008). Without data, users 
cannot demonstrate causes of contamination and/or 
over exploitation of the resource, limiting their ability 
to lobby local authorities for improvements. Knowing 
water needs, water availability and the way human 
activities are affecting the resource, permits a 
diagnostic of overall watershed conditions, and the 
determination of priority sites for intervention.  

In Romania authors in (Teodosiu et al., 2013) 
present a case study of how public participation, 
within the context of Integrated Water Resources 
Management (IWRM), promoted by promoted by the 
Global Water Partnership (GWP).  IWRM is defined 
as “The process that promotes the coordinated 
development and management of water, land, and 
related sources to maximize the resultant economic 
and social welfare in an equitable manner, without 
compromising the sustainability of vital ecosystems” 
(GWP, 2000). The implementation of IWRM requires 
a participatory approach (Odendaal, 2002). It means 
that water management authorities should involve 
relevant stakeholders, such as representatives of 
water companies, industry, municipalities, 
agriculture, services, environmental protection 
agencies, non-governmental organizations (NGOs), 
universities and research institutions in planning, 
decision-making and implementation, instead of 
adopting a top-down approach (Casteletti et al., 
2007).  

The importance of public participation (PP) in 
water management is also recognized by the 
European Commission through its Water Framework 
Directive (WFD, 2000/60/EC), which was the first 
directive that explicitly asks member states to inform 
and consult the public. Other directives, for 
example, on environmental assessments 
(2001/42/EC) and floods (FD, 2007/60/EC), have 
introduced similar requirements. 

The implementation of these requirements is 
particularly challenging for new member states of 
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the European Union (EU), many of them being post-
communist countries. These countries are 
characterized by major environmental problems, and 
although the European requirements have been 
transposed into national legislation, practical 
application of PP is still lagging (Kremlis and Dusik, 
2005). The governments of these new EU members 
rather give priority to the establishment of 
competitive markets and liberalization, while 
neglecting the development and empowerment of 
strong civil society representatives that would play 
active roles in the implementation of IWRM. 

In Romania, besides the huge challenge of 
complying with the water quality standards of the 
WFD, there are serious issues to be addressed 
within the development of effective public 
participation. The case studies in (Teodosiu et al., 
2013) show that the role of PP in dealing with these 
challenges is still limited. The first case shows that 
the traditional stakeholders, especially the water 
management authorities, still see PP as a simple 
formal requirement for the implementation of the 
WFD. Other stakeholders, especially NGOs and 
water users, feel the need for better representation 
and involvement, not only in public information and 
consultation activities, but also in the decision-
making processes.  

In practice, as the case of formal participation in 
the development of river basin management plans 
shows, stakeholders are often very passive in 
reacting on plans. And, when stakeholders are 
engaged in an early stage of the planning process, 
as is shown in the case of active stakeholder 
involvement, authorities are reluctant to use the 
results. 

For data collection, more recently people turned 
their attention towards what is called Participatory 
Sensing (Campbell et al., 2006). Unlike the 
traditional questionnaire-based collection processes, 
participatory sensing relies on electronic means 
widely available for collecting the data with the help 
of ordinary people. As mobile phones, have evolved 
from devices that are just used for voice and text 
communication, to advanced platforms that can 
capture and transmit a range of data types (image, 
audio, and location), the adoption of these 
increasingly capable devices by society has enabled 
a potentially pervasive sensing paradigm - 
participatory sensing. A coordinated participatory 
sensing system engages individuals carrying mobile 
phones to explore phenomena of interest using in 
situ data collection (Paulos et al., 2008). By enabling 
people to investigate previously difficult to observe 
processes with devices they use every day, 
participatory sensing brings the ideals of traditional 
community based data collection and citizen science 
to an online and mobile environment, while offering 
automation, scalability, and real-time processing and 

feedback (Cooper et al., 2007). In participatory 
sensing, individuals explicitly select the sensing 
modalities (they are in control of their privacy-
related data) to use and what data to contribute to 
larger data collection efforts. 

 

Processing large amount of data, its 
efficient and secure storage, data 
processing and sharing  

The next step after deciding on the right models 
and tools to describe the problem at hand, is to 
consider how to process and extract useful 
knowledge out of large amounts of data potentially 
being captured and stored from water-related 
sensors. Several choices for runtime environment to 
help distribute the data analytics processing are 
presented below (our original analysis on the topic 
was previously published in (Dobre and Xhafa, 
2014)). The hardware support of 
parallelism/concurrency varies from shared memory 
multicore, closely coupled clusters, and higher-latency 
(possibly lower bandwidth) distributed systems.  

The coordination (communication 
/synchronization) of the different execution units vary 
from threads (with shared memory on cores), MPI 
(message passing interface, between cores or nodes 
of a cluster), workflow or mash-ups linking services 
together, and the new generation of data intensive 
programming systems typified by Hadoop 
(implementing MapReduce) or Dryad. Short running 
threads can be spawned up in the context of 
persistent data in memory and have modest 
overhead (Fox et al., 2010). Short running processes 
(i.e., implemented as stateless services) are seen in 
Dryad and Hadoop. Also, various runtime platforms 
implement different patterns of operation. In 
Iteration-based platforms, the results of one stage 
are iterated many times. This is typical of most MPI 
style algorithms. In Pipelining-based platforms, the 
results of one stage (e.g., Map or Reduce operations) 
are forwarded to another. This is functional 
parallelism typical of workflow applications.  

A (non-comprehensive) presentation of 
technologies in use today for Big Data processing is 
presented in Figure 1. 

 
Fig. 1:  Example of an ecosystem of Big Data 

analysis tools and frameworks (Dobre & Xhafa, 
2014) 
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In the mid-2000s we witnessed the first problems 
dealing with large volumes of data, like analyzing 
internet-scale of data or interpreting genomics data 
(the first “popular” HPC problems). Suddenly the 
High-Performance Computing community had 
problems to solve, where scalability, accuracy, large-
scale data storage, and distributed matrix arithmetic 
became mainstream. This was an Era when people 
tackling such problems started creating parallel 
computing stacks, and MPI inarguably supported the 
initial growth of cluster computing. Even for data 
analytics related to assessing water management 
processes MPI proved its valuable support, due to its 
elegant support for general reductions (Camp et al., 
2011). However, soon enough the scientific 
community wanted more, as MPI failed to deliver 
support for fault tolerance, and/or it failed to show 
the flexibility that later alternative tools (such as 
Hadoop or Dryad) brought. It took 14 years to go 
from MPI-2 to MPI-3, and even still it has a 
hardcoded in 32-bit limit throughout almost its 
entire API, limiting how many objects it can deal 
with at once without going through pointless but 
straightforward hoops. No wonder that the HPC 
community moved on. 

Later, MapReduce (MR) emerged as an important 
programming model for large-scale data-parallel 
applications (Dean and Sanjay, 2008). MapReduce 
breaks a computation into small tasks that run in 
parallel on multiple machines, and scales easily to 
very large clusters of inexpensive commodity 
computers. The most popular open-source 
implementation of MapReduce is today Hadoop 
(Zaharia et al., 2008), and includes several specific 
components, such as its own file system, or support 
for fault tolerance and for scheduling in 
heterogeneous clusters. Due to its simplicity in 
design, no wonder that even today many projects 
relying on the use of computer tools for water-
related data analytics rely on Hadoop in support for 
processing large volumes of sensed data (Zhang et 
al., 2015; Jach et al., 2015). 

The next generation of HPC tools includes 
platforms such as Pig or Dryad. The problem with the 
MapReduce model is that it cannot be applied 
straightforward to all problems. The HPC community 
soon discovered that, although adequate for indexing, 
for problems from the realm of machine learning and 
data predictions it was not that easy to use.  Thus, 
Pig (Olston et al., 2008) and later Hive (Thusoo et al., 
2010) was developed on top of the MapReduce 
model to hide some of the complexity from the 
programmer, offering a limited hybridization of 
declarative and imperative programs and generalize 
SQL’s stored-procedure model. Twister is another 
MapReduce extension, designed to support iterative 
MapReduce computations efficiently (Ekanayake et 
al., 2008) based on a publish/subscribe messaging 

infrastructure for communication and data transfers. 
Dryad is a general-purpose distributed execution 
engine for coarse-grain data-parallel applications 
(Isard et al., 2007), that allows fine control over the 
communication graph as well as the subroutines that 
live at its vertices. From these examples, Dryad is 
designed to scale from powerful multi-core single 
computers, through small clusters of computers, to 
data centers with thousands of computers. The Dryad 
execution engine handles all the difficult problems of 
creating a large distributed, concurrent application: 
scheduling the use of computers and their CPUs, 
recovering from communication or computer failures, 
and transporting data between vertices. 

Finally, we are now in the moment when even such 
tools, designed to optimize the way data is handled 
and processed over novel database models (i.e., such 
as NoSQL and NewSQL), is simply not enough 
anymore. Data scientists want even more scalability 
and faster delivery of results from their tools, and so 
the early 2010s witnessed the development of the 
current wave of HPC tools: In-Memory Processing (or, 
sometimes called In-Memory Computing).  

Spark is among the pioneering framework that 
supports this processing model (Zaharia, 2010). In-
Memory Computing may be defined as a solution 
that stores data in RAM, across a distributed system 
(cluster, cloud), and processes it in parallel. Spark 
provides two main abstractions for parallel 
programming: resilient distributed datasets and 
parallel operations on these datasets (invoked by 
passing a function to apply on a dataset). Resilient 
distributed datasets (RDDs) are read-only collections 
of objects partitioned across a set of machines that 
can be rebuilt if a partition is lost. Users can 
explicitly cache an RDD in memory across machines 
and reuse it in multiple MapReduce-like parallel 
operations. RDDs achieve fault tolerance through a 
notion of lineage: if a partition of an RDD is lost, the 
RDD has enough information about how it was 
derived from other RDDs to be able to rebuild just 
that partition. As per experiments (Zaharia et al., 
2010), by making use extensively of memory 
storage (using the RDD abstractions) of cluster 
nodes, most of the operations Spark can outperform 
Hadoop by a factor of ten in iterative machine 
learning jobs, and can be used to interactively query 
a large dataset with sub-second response time.  

Other in-memory tools include examples such as 
Apache Ignite or SAP’s HANA (Mazumder et al., 
2016). Apache Ignite is an In-Memory Data Fabric 
that combines different components like in-memory 
data grid, in-memory computing grid, and in-
memory streaming into the same unique solution. 
SAP’s HANA is an in-memory database that provides 
large data analysis and aggregation. It uses very 
large amounts of main memory, multi-core CPUs on 
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multiple nodes in a cluster, and SDD storage, to 
improve the performance.  

Around such tools, projects already appear that 
make use in-memory processing to deal with tough 
problems. For example, Spark Streaming is used in 
(Nuesch et al., 2014) to detect anomalies in water 
distribution networks in real time, and Apache Spark 
in (Domoney et al., 2015) as the tool for 
autonomous monitoring of city’s water turbines and 
for automated leak detection. 

 

Alert System for Water Quality Support 
In European Union, a remote sensing tool for 

monitoring water quality was implemented for 
waters in the Mediterranean Lakes.  

The sensors were designed to detect 
cyanobacterial and other toxic substances. The 
system generates surveillance maps after analyzes 
data with the main objective to report any alerts. 
The generated maps are improving the MERIS and 
CHRIS data (from Earth observation) that were 
developed at the beginning of 2000 representing 
images from satellites focused on spectral, spatial, 
and temporal resolutions. 

Another example can be the alert system 
implemented on Orbigo River in Spain whose main 
purpose is to warn about possible droughts and 
prevent them to happen (Paredes-Arquiola et al., 
2013). Drought planning requires preliminary 
identification and analysis of the risks. To reduce 
dryness risk, people had to understand first the 
climatology and make an analysis to determine the 
vulnerability and what people and sectors will be 
most affected, why these changes occur and if these 
relationships are changing over time. In case of 
Orbigo River, the demand of the system is larger 
than the amount of the resources available, the 
possibility of draughts is high.  

Reservoirs were constructed to maintain flood 
prevention and lamination during rainy seasons in 
autumn and spring. The reservoirs are empty before 
summer and full again for irrigation season.  

In 1998-1989, irrigation was delayed to a second 
plane to ensure urban water supply. The system 
implemented is formed by a series of piezo metric 
levels, streamflow, reservoir inflows and 
precipitation. The values taken by indicators define 
the drought status. For this river, there were 
established for levels of emergency: normality, pre- 
alert, alert and emergency (Haro et al., 2014). 

China, the country with the most people on 
Earth, has developed a system named DEWS that 
controls the parameters of urban water quality. 
DEWS have a web service and provide users with 
water quality monitoring functions.  

The system is guided by control theory and risk 
assessment as applied to the feedback control of 
urban water supply systems (Lu et al., 2008). 

Web Application 
We developed a web application accessible via 

internet on every browser anytime. The benefit 
offered by a web application it the large scalability. 
Almost every person who has access to a laptop or 
other device is just a click away from information. 

First, the web application will be implemented 
just for the water resources (rivers, lakes, natural 
pools, etc.) in Romania. On the main screen of the 
application there will be some menus that will 
include: statistics, charts, top clean/dirty water 
resources, search option and a history when we can 
find all the previous stats about that the resource. 

The users can search for a water source to 
access more information, they will have the options 
to generate diagrams, to make comparisons 
between - for example - last year on February to 
same month this year. They also can generate 
reports for multiple water resources and will have 
the option to download them. 

In addition to this we will place a WQI (Water 
Quality Index) calculator integrated on main 
platform where users can introduce data themselves 
and see the results immediately. Data feeds it’s the 
most important thing in this project. Because of the 
lack of feeds, I’m obligated to divide the map into 
two parts: real time map (alerts generated today 
based on data from today) and warning map (alerts 
generated on last update for that water resource for 
example last 2 weeks). In the most cases the data 
will be backdated and not in real time. 

For this application, we will use the most 
important parameters from WQI to generate alerts 
enumerated below: arsenic, biochemical oxygen 
demand, cadmium, cyanide, dissolved oxygen, 
fluoride, mercury, nitrate-nitrogen, pH, selenium, 
total coliform, and total phosphorus. 

Based on legend below (see Table 1) the system 
will make decisions about the warnings who will be 
shown to users. Note that all the parameters are 
taking into the account to generate the warnings. 

In Figure 2 we present the logical flow of web 
application scheme. 
             Table 1: Range – Quality semantic 

Range Quality 
90-100 Excellent 
70-90 Good 
50-70 Medium 
25-50 Bad 
0-25 Very Bad 
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Fig. 2:  Web Application Scheme 

Online Water Quality Monitoring (OWQM) 
OWQM utilizes real-time water quality data 

collected from monitoring stations deployed at 
strategic locations in a distribution system.  

The data generated are continuously analyzed to 
support operation at system level and capture water 
anomalies. OWQM gives valuable understanding into 
real-time conditions in a distribution system.  

This information allows sensors to detect unusual 
water quality which can generate earlier, and more 
effective, corrections if necessary. It has other roles 
such as optimizing the system.  

It has four significant elements: 
x Data generation which determines the water 

quality data produced trough OWQM. It is defined 
by the following decisions: 

o What to monitor: the parameters 
monitored in the distribution system the 

information available to utility and the possible 
water incidents. Also, monitoring includes: 
conventional parameters: pH, specific 
conductance, turbidity, potential and 
temperature; advanced parameters:  

o examples (TOC and UV-Vis); hydraulic 
parameters: pressure, flow; 

o How to monitor: The sensor used for 
monitoring chosen parameter(s), equipment 
required can dramatically impact the capital and 
operating costs, data accuracy; 

o Where to monitor: Monitoring stations 
can be located anywhere but should be placed in 
a distribution system, and can include pump 
stations or storage tanks (USEPA, 2015a). 
x Data communication requires sending of 

OWQM data to a central storage location. Methods 
of communication may include digital subscriber 
lines, cellular networks, radio. The type and quantity 
of data produced, existing communication 
capabilities and the locations from which data must 
be transmitted can impact selection of data 
communication solution(s); 

x Information management and analysis: 
receive information, processes and stores it, and 
make it available to users; 

x Alert investigation: When an alert is 
received, utility personnel follow defined alert 
investigation procedures to identify its cause. In 
many cases, a simple review of information is 
sufficient to determine that an alert does not 
indicate anomalous water quality, and is therefore 
invalid. The most common causes that may occur of 
invalid alerts are the malfunctions of sensors and 
data transmission failure. If a problem can’t be 
identified through data review, usually manual 
investigation is conducted at the monitoring location 
that induce the alert to check if accurate data is 
being generated and correctly communicated. 
Usually other samples are collected to further 
investigation (USEPA, 2015b). 

If it is proved that an alert was caused by a 
water quality incident, it will be necessary to correct 
that with actions that mitigate potential 
consequences.  

For example, if the alert was a reaction of low 
disinfectant residual data, steps may be taken to 
increase concentrations in the area.  

However, if the source of the problem could not 
be determined, investigations will be made to the 
system because it can be contaminated.  

Standard procedures will be used based on 
contamination level (see Table 2). 
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Table 2: Goals and performances 

Design Goal Description 

Detect water 
quality incidents 

OWQM data can be used to detect unusual water quality conditions in distribution 
systems. This can contain regular system occurrence such as nitrification, rusty, 
turbid water. It also brings the ability to detect other substances in distribution 
systems resulting from pipes, negligent cross- connections, and other events, 
chemical spill treatment and intentional contamination. 

Optimize system 
operation 

Knowledge of a real-time water quality and improved understanding of the impact 
of operational changes on water quality and flow paths can improve staff to 
manage treatment chemicals better informing pump, valve and tank operation. 

Support compliance 
with water quality 
goals and 
regulations 

Information collected during a distribution system, particularly in areas of concern, 
can identify when quality goals aren’t met and providing time for actions to correct 
potential compliance issues. 

Enhance asset 
management 

Regular data overview can reveal changes in system conditions that can affect the 
performance and longevity of assets such as pipes, pumps etc. 

Universal Water Quality Index (UWQI) 
A new upgraded index called Universal Water 

Quality Index was the results of the developments 
above. It is more simple and better to understand 
by 3rd party people and it main purpose it is to 
describe the quality of the surface water used for 
drinking water supply. The main addition to this 
index reflects the specific use for drinking water 
supplies rather than general supply. The UWQI is 
based on European Union set by Council of the 
European Communities in 1991 (75/440/EEC). This 
legislation classifies water drinking into three 
groups. Every group would have a different level of 
treatment. 

- Class I: Requires basic physical treatment and 
disinfection; 

- Class II: Requires normal physical treatment, 
chemical treatment, and disinfection; 

- Class III: Requires high physical and chemical 
treatment, extended treatment, and disinfection. 

The UWQI index will be calculated based on sub-
indexes that are represented by functions which 
transform units and dimensions of water qualities 
into a variable to be represented into a common 
scale. The values and ranges for every parameter 
were calculated by water experts after elaborated 
studies. If the content of a sub-index is lower than 
the value set for class I, the value is set 
automatically to ‘100’. If the content of a sub- index 
is greater that the value set for class III, the value is 
set automatically to ‘0’. ’50’ represent the acceptable 
sub-index for class II. All the mathematical 
expression where fit for each parameter to obtain 
exactly these three values of ‘0’,’50’ and ‘100’ 
(Philadephia, 2013).  

The overall index formula is calculating as a sum 
of sub-index parameter Ii, each sub-index being 
multiplied by a weight wi. 
 

Data Evaluation and Results 
Data sets proposed for tests were randomized 

accordingly to minimum and maximum potential 
values for every parameter. These are the values 
that I used for data in simulation assigned in 
application to Danube (Dunărea) River and they are 
not representing the real world. Data used is just to 
demonstrate the formulas and how the data is 
manipulated inside the whole system.  

In the image below there are exposed an 
example of data sets for about 14 batches of arsenic 
parameter. There can be found via water sub-menu 
by selecting the water source, in this case Danube 
River. Every batch means a complete data set of all 
the twelve parameters captured who are generating 
a full-index. Also for every line there is saved the 
data when was captured to keep a good track of the 
records. An example is presented in figure 3. 

 

 
Fig. 3:  Example of water parameter data (Arsenic) 
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For every water source, there are also generated 
reports, below are some descriptive statistics that 
show the evaluation of data showed in figure 4.  

We have stats for Danube River, including every 
parameter, number of samples taken, mean who is 
the common average, median represents the middle 
value of samples, mode is the most common range 
is the difference between maximum and minimum 
columns. 

 

 
Fig. 4:  Descriptive statistics (example for Danube 

River 

 
After few studies, it is believed that water quality 

assessment is far better than comparing the same 
data with experimentally obtained data with from 
existing guidelines.  

New indexes values are more precise for a 
decision to make reporting the quality of water in 
time and space easing the decisions to determine 
the maxim acceptability for each set of parameter 
referring to the range set in in the descriptive 
statistics.  

In Figure 5 we can see the evolution of indexes 
from all the 50 batches taken. In the first part, we 

observe a stability around 80, next it’s fluctuating 
from high to low values. All these values and 
indexes are automatically calculated and they are 
keeping updating with new data coming.  

 

 
Fig. 5:  Evolution of Water Quality Index 

 
We also extend the functionality to manually 

calculate the water quality index like Figure 6 (left). 
In Figure 6 - right we observe that the most 
influential parameters who affect the final WQI 
results are Selenium from Class III, pH and DO 
(Dissolved oxygen) from class II. To increase the 
WQI we need to change the parameter values to a 
high class.  

By decreasing Selenium with 0.01, pH with 1.7 
and increasing Dissolved oxygen with 2 we end up 
with Excellent water quality with WQI at almost 94.  

The margins between data are so small but they 
are exponentially deciding the result. 

        
Fig. 6: Water Quality Index – Calculator (example) left, and Water Quality Index – Calculator (increased 

index) right 
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Conclusion 
In the first part of this paper we presented the 

main aspect of how ICT models can be applied in 
data processing as support for extracting valuable 
information from collected data.  

Several tools for water resource management are 
presented. The we describe the implementation of a 
monitoring tool for the water quality on both rivers 
and lakes. The part of how the data is being 
captured was just mentioned so we can understand 
how the flow works.  

We implement the Universal Water Quality Index, 
which is stronger than other classical indexes and is 
independently use from other research and obtained 
data laboratory existing guidelines purporting to 
improve the results based on historical data. In 
other words, the more data captured and covered 
the more precise in time is the range of the 
parameters data captured being able to determine 
the ranges of concentrations for every class. 

We can conclude that data processing related 
research directions that need strong ICT support are 
very demanding in our days, considering the variety 
and complexity of the research field, and the 
necessity of targeted, specialized research teams, 
able to deal with different perspectives, but with 
deep expertise in one of them. 
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