
CEAI, Vol.18, No.3 pp. 63-71, 2016 Printed in Romania

Rapid Parallel Detection of Distance-based Outliers in Time Series using
MapReduce

Sorin N. Ciolofan, Florin Pop, Mariana Mocanu, Valentin Cristea

Computer Science Department, University Politehnica of Bucharest, Romania (e-mail: sorin.ciolofan@cs.pub.ro,
florin.pop@cs.pub.ro, mariana.mocanu@cs.pub.ro, valentin.cristea@cs.pub.ro)

Abstract: Time series analysis is crucial in a large number of knowledge domains ranging from micro
and macro economy, industry, tourism, health to hydrology, meteorology, agriculture, demography, etc.
The interest in efficiently and meaningfully processing of time series data increased in the last decade
with the spreading of sensor networks and Cyber-Physical Systems which produce huge amounts of
measured data. The outlier detection is a key issue for Quality Assurance of time series data and its goal
is to detect the objects that present a very different behavior from the expected one. Once identified, these
objects are either removed or corrected. In this paper we propose a highly scalable parallel data
processing algorithm for outlier ranking based on the distance between data objects. As opposed to the
current existing sequential implementations, the provided algorithm is based on the parallel processing
employed by the MapReduce paradigm. Using real monitored solar data for experimental validation we
show the dramatically improvement of running time for large archives of time series (millions of records
order).
Keywords: Time Series; Outliers; Distributed Processing; MapReduce; Data Mining.

1. INTRODUCTION

The proliferation of Internet searches, social media, Internet
of Things (IoT), sensing devices in the context of smart cities
as well as the unstructured data explosion (video, audio,
images, etc.) require a shift in data management from the data
warehouses and them distribute processing applications to a
holistic approach combining distributed storage, distributed
processing, artificial intelligence, multiprocessors systems,
aspects mentioned by (Pasupuleti, 2014). The traditional
systems failed to address the challenges posed by Big Data in
terms of data availability, concurrency, fault tolerance and
task scheduling. A solution for task scheduling for many task
computing, which is useful for Big Data processing was
presented by (Sfrent and Pop, 2015). Relational databases,
especially commercial ones (Teradata, Netezza, Vertica, etc.)
can handle to some extent the volume problem of Big Data
but cannot deal with the other two (velocity and variety), as
(Madden, 2012) state. On the other side, a theoretical solution
for large-scale data-sets modeling using Petri nets was
introduced by (Song et al., 2015). They proposed four new
methods to meet the new features of data transmission among
datacenters.

Apache Hadoop is a set of open source applications that are
used together in order to provide a Big Data solution for both
storage and parallel processing. The two main components
mentioned above are in Hadoop, HDFS and YARN. Hadoop
Distributed File System (HDFS) is organized in clusters
where each cluster consists of a name node and several
storage nodes. A large file is split into blocks and name node
takes care of persisting the parts on data nodes. The name
node maintains metadata about the files and commits updates
to a file from a temporary cache to the permanent data node.

The data node does not have knowledge about the full logical
HDFS file; it handles locally each block as a separate file.

In Hadoop, fault tolerance is achieved through replication;
optimizing the communication by considering the location of
the data nodes (the ones located on the same rack are
preferred). YARN is an acronym for MapReduce v2.0.
YARN implements a master/slave execution of processes
with a JobTracker master node and a pool of TaskTrackers
which do the work. The two main responsibilities of the
JobTracker respectively management of resources and job
scheduling/monitoring are handled by two separate daemons.
There is a global resource manager (RM) and a per
application Application Master (AM). The slave is a per node
entity named Node Manager (NM) which is doing the
computations. The AM negotiates with the RM for resources
and monitors task progress.

To create a Big Data ecosystem other components are added
on top of Hadoop: configuration management (Zookeeper,
presented by (Haloi, 2015)), columnar organization (HBase,
discussed in (George, 2011)), data warehouse querying
(Hive, with its highlights presented by (Thusoo et al., 2009)),
easier development of MapReduce programs (Pig, presented
by (Olston et al., 2008)), machine learning algorithms
(Mahout, described in (Owen et al., 2011)). According with
(Dean and Ghemawat, 2008), MapReduce is a programming
model and its implementation for processing large data sets.
The programs are automatically parallelized and run on
clusters of machines.

However, as (Stefan , 2014) shown, this paradigm is not new
in the Computer Science landscape, the theoretical roots of
MapReduce can be found back in the 1936 in Stephens
Kleene general recursive functions. The concept of map()

64 CONTROL ENGINEERING AND APPLIED INFORMATICS

and reduce() functions is present in elementary circuits
design, Backuss functional programming model, Lisp and
Scheme and finally, nowadays, in Cloud Computing. The
overall principle is presented in Fig 1.

Fig. 1. MapReduce overview presented by (Dean and
Ghemawat, 2010).

The input files are split into fragments (16-64Mb) and then
each split is parsed according to InputFormat/RecordReader
and pairs (key, value) are generated and presented to the
custom map() function. JobTracker determines which
TaskTrackers are available and based on their proximity to
data sources, data is sent for processing. The map() function
produces a new set of (key, value) elements which are written
to the memory buffer. Optional combine() function can be
used to reduce values on a key. The partition() function is
applied to each key to determine the index of the reducer that
will handle the corresponding value. When all records are
finished, the memory buffer is flushed into the corresponding
partitions built on local disk of the mapper machine. When
JobTracker is notified that some map tasks finished their
work it delegates reduce task trackers to download remote
data from the files of the mappers and concatenate into one
file (sorted by key) that will represent the input of the
reduce() function which computes the aggregated value and
writes it to the final file on HDFS. If initially MapReduce
was used for Web data processing, later the areas where
Hadoop proved its utility greatly extended to many domains
including environmental sciences (e.g. hydrology), being
subject to many optimization approaches, as (Nita et al.,
2015; Voicu et al., 2014) proposed.

In (Jitkajornwanich et al., 2013), the authors speed up the
storm identification using MapReduce instead of DFS (depth
first search) traversal. For the locally storm the authors claim
the new algorithm is 19 times faster and for hourly storms, 15
times faster. Also, they use as input directly the raw rainfall
data file rather than storing it in ODM relational database,
which is how they did in a previous approach and noticed
significant disk I/O latency, results discussed by (Tarboton et
al., 2007).

The paper is further organized as follows: Section 2 presents
related work from outlier detection perspective, pointing
advantages and drawbacks of each class of methods. Section

3 discusses the proposed algorithm for parallel distance based
outlier detection while Section 4 presents the experimental
validation of the algorithm and the results of the tests.
Section 5 is dedicated to conclusions and future perspectives.

2. BACKGROUND AND RELATED WORK

Anomalies (or outliers) are data objects behaving far different
from expected. Detection of such objects is very important in
many practical applications: medical and healthcare,
environmental resources management, public safety, fraud
detection, industry processes, etc. Noise is a random error or
variance which occurs in a measured variable and represents
a different concept. Because it can look similar to outliers,
often a confusion between the two concepts could arise, but
in general the amount of error is not too far away from the
expected value in the case of noise while in the case of
outliers it is too far away. On the other hand, noise can alter
the data set quality and make difficult to recognize outliers. It
worth to be noted that outliers can have a very high impact on
the accuracy of an analysis. Even the percentage of outliers is
very low, they can play a key role in the application domain.

Anomalies can be detected in private or public Clouds using
logging systems (see solutions presented by (Patrascu and
Patriciu, 2014; Morariu et al., 2014), in real-time application
monitoring (as is described by (Morariu et al., 2013) and
represents an important aspect of Cyber Physical Systems
security, approaches considered by (Wang et al., 2011).

Though the definition of outliers may seem simple, in
practice there are major difficulties for detecting them, as
Singh and Upadhyaya (2012) exemplify. There is often
impossible to delimit a precise boundary between “normal”
and outlier behavior. Malicious users can “dis-guise” outliers
to appear like normal values. The notion of outliers is very
different in respect to the application domain (in medicine a
small variation of body temperature is considered an outlier
while on stock market can be taken as normal). Because of
these difficulties rather than trying to provide a universal
method the detection techniques try to solve a specific
problem.

According with (Han et al., 2011), outliers can be categorized
in three main categories:

(1) global outliers: the value of the candidate differs
significantly from all the other values;

(2) contextual outliers: the candidate can be an outlier
only in some circumstances; and

(3) collective outliers: a group of values that together
deviates significantly from the rest of the data set
while the individual objects that compose the
collective outlier may not be themselves outliers.

It worth to mention that a data object can present both
behavioral attributes and contextual attributes. A global
outlier can be viewed as a contextual outlier with an empty
set of contextual attributes. Methods of outlier detection fit in
one of the following categories:

A. supervised methods,

B. unsupervised methods, and

CONTROL ENGINEERING AND APPLIED INFORMATICS 65

C. semi supervised methods.

In the first category, a domain expert can label the data,
deciding which values are “normal” and which “abnormal”.
Based on this initial categorization a machine can learn
further how to label future values. In the second category
labels applied by a human expert are not available and to be
able to decide which data can be considered outlier are used
proximity based methods or clustering methods (described
below). In the semi supervised methods labels are available
only for a small subset of the initial data.

The data that has only one variable is called univariate while
data involving two or more variables is called multivariate.
According to the assumptions made regarding when a value
is considered abnormal another classification can be made
into: statistical methods (data is assumed to follow a certain
model (e.g Gaussian distribution) so data that not fit into that
model is considered “abnormal”; in our papers (Ciolofan et
al., 2014; Pop et al., 2014) we discussed the parametric
statistical methods in detail, proximity based methods
(outliers are identified based on the distance between them
and their neighbors) and cluster based methods (normal
values are supposed to belong to large and dense clusters
while outliers are not included in a cluster or form a low
density small cluster, (see Breunig et al., 2000), angle based
outlier detection (ABOD, presented by (Kriegel et al., 2008)),
based upon the idea that if object x is an outlier then the angle
between pairs of the remaining objects become small). The
advantage of this last method is that the algorithm is
parameter free but the drawback refers to its O(n2)
complexity.

In the statistical parametric methods for univariate variables,
based on the mean and standard deviation, one can estimate
the probability that a certain measured value can occur in
reality. If that probability is low (0.15%) the value can be
labeled as outlier. Another straightforward test to check one
outlier at a time is Grubbs test (also called "maximum
normed residual test", according with (NIST/SEMATECH,
2015). In this approach the values are sorted from the lowest
value to the highest and then it is checked if the maximum (or
minimum) value is an outlier. Tietjen-Moore test is suitable if
exactly k anomalies are suspected, either in the upper tail or
in the lower tail or in both tails of the sorted array. The
drawback is that k has to be specified in advance. If the value
k is not known, then the ESD test (Extreme Studentized
Deviate) can be applied assuming an upper limit for k is
specified. For the multivariate variables, the problem can be
reduced to the detection of outliers for univariate variable
(e.g using Mahalanobis distance).

In the non parametric methods the statistical model is not
known beforehand. Based on the input data, efforts are made
to infer the model. In the histogram method first step is the
creation of the histogram and second step is the mapping of
the tested value to one of the histograms slots. Another
method is to approximate the probability density function
using a kernel function:

𝑓ℎ(𝑥) =
1
𝑛ℎ

�𝐾�
𝑥 − 𝑥𝑖
ℎ

�
𝑛

𝑖=1

In the above equation, 𝑓ℎ is the estimated probability density
for a variable 𝑥, 𝑛 is the size of the dataset, ℎ is a smoothing
parameter and 𝐾() is the kernel function (e.g uniform,
triangular, Epanechnikov, biweight, triweight, Gaussian,
etc.). In practice a Gaussian kernel function with mean 0 and
standard deviation 1 is often used such as:

𝐾(𝑥) =
1

√2𝜋
𝑒𝑥𝑝 �−

1
2
𝑥2�

The kernel is a weighting function used in non-parametric
estimation techniques with the following properties:

• Positive definition: 𝐾(𝑥) ≥ 0;
• ∫ 𝐾(𝑥)𝑑𝑥𝑅 = 1;

• Symmetry to the origin: ∫ 𝑥𝐾(𝑥)𝑑𝑥𝑅 = 0;
• Finite second moment, written as: 𝜇2(𝐾) =

∫ 𝑥2𝐾(𝑥)𝑑𝑥𝑅 < ∞.
In general, any function with the mentioned properties can
be used as kernel estimation. To select a scale that is
appropriate for a specific set of data we can introduce ca
scaling factor 𝜆 > 0 and re-define the kernel as:

𝐾�(𝑥) = 𝜆𝐾(𝜆𝑥)

Using clustering for anomalies detection, we face with at
least two disadvantages. First, clustering is a computationally
very expensive and do not scale efficiently for large sets of
input data. Besides that, one has to first process the majority
of data (normal values which are not of primary interest here)
in order to, finally, get to the outliers. Secondly, some
methods of clustering (such as 𝑘-means technique) are not
suitable for outlier detection since they are negatively
affected by outliers and noise in the input data.

Historically, (Knorr and Ng, 1998) was the first article to
define an algorithm for detection of distance based outliers.
An object o is considered distance based outlier DB(𝑀, 𝐷) if
it has less than 𝑀 objects located in its 𝐷-neighborhood.
Formally this can be expressed as:

‖{𝑜′|𝑑𝑖𝑠𝑡(𝑜, 𝑜′) ≤ 𝐷�}‖ ≤ 𝑀

where 𝑑𝑖𝑠𝑡(𝑜, 𝑜′) is the distance between the two objects (e.g
euclidean distance), 𝐷 and 𝑀 are two user supplied
parameters, 𝑀 being far less than 𝑁 (the total number of
objects). Further we consider that data is a time series where
at any instant in time t we get at most one real number value.
Hence,

𝑑𝑖𝑠𝑡(𝑜, 𝑜′) = |𝑜 − 𝑜′|

The algorithm rather than verifying for each point how many
neighbors it has in its 𝐷-neighborhood, groups the data into
segments (cells) and asserts whether all objects in that
segment are outliers or not. The data space is divided in
segments of length 𝐷/2 and points are mapped to the
corresponding segment according to their values (Fig 2). For
a specific segment 𝐶 we note 𝐿1(𝐶) (level 1 of 𝐶) the two
adjacent segments and 𝐿2(𝐶) (level 2 of 𝐶) the segments
situated at one segment distance from 𝐶. The bullets
represent values of time series data and the stacked bullets

66 CONTROL ENGINEERING AND APPLIED INFORMATICS

means the same value which occurs at different timestamps.
Further is defined:

𝑃(𝐶) = 𝐶 ∪ 𝐿1(𝐶) ∪ 𝐿2(𝐶)

the partition composed of the five segments and 𝐶 is named
the “main segment of 𝑃”. The following properties hold:

(1) (∀𝑥 ∈ 𝐶) ∧ (∀𝑦 ∈ 𝐶′|𝐶′ ∈ 𝐿1 �) ⟹𝑑𝑖𝑠𝑡(𝑥,𝑦) ≤ 𝐷;
(2) if (𝐶′ ∉ 𝐿1) ∧ (𝐶′ ∉ 𝐿2) ∧ (𝐶′ ≠ 𝐶) ∧ (𝑥 ∈ 𝐶,𝑦 ∈

𝐶′) ⟹𝑑𝑖𝑠𝑡(𝑥,𝑦) > 𝐷;

Based on these properties we can infer following rules which
will help in process of determining the outliers:

• R1 : If 𝐶 contains more than 𝑀 points then none of
the objects in 𝐶 is outlier;

• R2 : If C and 𝐿1(𝐶) contains more than 𝑀 points
then none of the objects in 𝐶 is outlier;

• R3 : If C and 𝐿1(𝐶)and 𝐿2(𝐶) contains less than 𝑀
points then every point in 𝐶 is outlier;

• R4 : A 𝐿1 neighbor of a cell C as in rule R1 has none
of the objects outlier because we can find more than
𝑀 points at a distance less than 𝐷 (the points in 𝐶).

To elaborate the algorithm and distinguish between segments
of type R1 and segments of type R4 the first one are marked
with red and the second with pink. This algorithm has two
main drawbacks: it requires the parameters 𝐷 and 𝑀 to be
supplied in advance (𝐷 is usually hard to estimate apriori)
and, secondly, it does not provide a measure of outlierness.

Fig. 2. Segmentation of the data space.

(Ramaswamy et al., 2000) proposed to measure the
outlierness by the 𝑘𝑡ℎ nearest neighbor (𝑘𝑡ℎ-NN) distance,
giving a ranking of outliers rather than a binary classification.
If the rank 𝑞(𝑥) is defined as being the distance between 𝑥
and the 𝑘𝑡ℎ nearest neighbor then it can be made a connection
with the Knorr-Ng algorithm and shown that the two
algorithms are equivalent and

𝐷𝐵(𝑀,𝐷) = {𝑥|𝑞(𝑥) ≥ 𝐷�}

The complexity of this algorithm is 𝑂(𝑛2).

(Sugiyama and Borgwardt, 2013) introduced the novel
idea of using an on-time random sample as a reference set
to compute the ranks of outliers. Best results are obtained
for a sample of 𝑠 = 20 objects. The input parameter is s,
the number of objects in the sample 𝑆. Each object has a
rank associated:

𝑞𝑆𝑝 = 𝑚𝑖𝑛{𝑑(𝑥, 𝑥′)|𝑥′ ∈ 𝑆(𝑠)�}.

Their algorithm is Θ(𝑛𝑚𝑠) time complexity (𝑛 is total
number of objects, 𝑚 is dimension number, and 𝑠 is
sample size) and is much faster than the actual state of the
art (2 to 6 orders of magnitude) being the most effective from
the detection capability point of view. All these algorithms

presented above are sequential, missing the benefits of
parallel processing. To overpass this major disadvantage, we
discuss in the next section a MapReduce algorithm based on
the idea of outlier detection by sampling.

Detecting outliers can be applied for specific performance
evaluation of heterogeneous systems, solution presented by
(Barbierato et al., 2011; Barbierato et al., 2013), modeling
Apache Hive based applications in Big Data architectures,
where outliers’ tests must be removed from data sets, solution
presented by (Barbierato et al., 2013), or estimation of the
energy consumption of mobile sensors, model presented by
(D'Arienzo et al., 2013). Related to the last application, an
overview of energy efficiency techniques in datacenters was
presented by (Valentini et al., 2013).

Facing with wide distributed data, a MapReduce framework
that aims to enable large-scale distributed computing across
multiple clusters was presented by (Wang et al., 2012).
Outliers detection can be done on local time series or on
distributed data coming from different sources (sensors,
drones, etc.). Using Hadoop for detecting outliers in time
series, we face with a big data computing computing across
distributed cloud data centres, where data access and security
is very important. A solution that describe a security
framework for Hadoop processing was introduced by (Zhao
et al., 2014), with design and implementation presented by
(Wang et al., 2013).

4. THE OUTLIERS DETECTION ALGORITHM IN TIME
SERIES BASED ON MAPREDUCE

We propose an outlier detection algorithm using MapReduce,
composed of two chained map-reduce tasks (Fig 3). First
problem is to compute in parallel a unique random sample of
size 𝑠 from the entire data set of 𝑛 objects and to pass it to
each mapper.

Fig. 3. Chained MapReduce tasks to compute the outliers
ranks.

CONTROL ENGINEERING AND APPLIED INFORMATICS 67

The naive approach would be to gather all 𝑛 data objects in a
Reducer and then randomly pick 𝑠 elements. However, this
has the disadvantage of the amount of data sent by mappers.

In our implementation we will use a reservoir sampling
method where each mapper associates a random number with
each data object it has access to, and then select the local top

𝑠 objects and sent to a reducer. The reducer will choose the
final random sample as being the top 𝑠 objects among all sets
of local top 𝑠 objects.

The Outliers Detection in Time Series Algorithm is presented
using MapReduce paradigm in Alg. 1. MAP1() function is
responsible for preparing the local top 𝑠 objects. In lines 6-9
the input file is parsed line by line and data objects are
initialized. Then, in a hash map data structure (hMap) the
object is put as a value, the key being the random number
generated (line 10). The observed data is emitted (line 11)
along with the local sample (line 21) after the prior sorting of
the hash map on keys (line 15).

REDUCE1() uses three utility data structures: samplePool
which consists of all sample objects sent by all mappers,
observationsPool which stores the corresponding measured
objects and globalSample which uses the samplePool to
extract the global random sample of size s with respect to the
entire set of measured data. The function has two main
responsibilities:

(1) to create the global random sample retaining the top
s objects from samplePool list (line 36), and

(2) to compute for each observed data object the
distances from this object to all objects included in
the sample (lines 37-41). The minimum of these
distances is then emitted as key for value data object
(line 43). The intermediate files contain the data
objects and their rank, without being sorted on rank.

MAP2() and REDUCE2() are just two identity map/reducers
used to sort the data from the intermediate files based on the
rank. The final output files contain data sorted on the rank.

4. EXPERIMENTAL RESULTS

To test the performance of algorithm described above we
used a Hadoop 1.2.1 cluster deployed on Google Compute
Engine Cloud facilities. Each node is n1-standard-2 type
having 2 VCPUs, 7GB RAM and 500 GB disk size.

The Hadoop cluster described in Fig. 4 has one Google
Compute Engine instance used as the Hadoop master node
which contains the HDFS NameNode and the MapReduce
JobTracker. Also is possible to have Hive and Pig installed
here. The workers in the cluster are Google Compute Engine
instances which can be configured depending on the
requirements for RAM and CPU's. Once created, the worker
nodes will have the Hadoop HDFS DataNode and
MapReduce TaskTracker software installed. Google Cloud
Storage (GCS) provides the storage support for input/output
files used in the MapReduce jobs. The link between the
worker instances and GCS is possible via the Google Cloud
Storage Connector for Hadoop. GCS is used for file storage
instead of HDFS because it provides quicker startup, less
maintenance, high availability and interoperability with other
services, as specified in (Google, 2014).

We deployed two configurations, the first one having 1
master node and 1 worker node and the other having 1 master
and 10 workers. The input consisted of real observations of
solar data made publicly by Vignola (2015c) such as
direct/diffuse solar radiation, spectral data, meteorological

68 CONTROL ENGINEERING AND APPLIED INFORMATICS

data (total rainfall, barometric pressure, humidity, snow
depth, etc.). Input data for our experiment consists of files of
size approximately 1.2Mb each file containing data measured
during one month using a 5 minutes interval.

Fig. 4. Hadoop on Google Cloud Platform, described by
(Google, 2014).

Table 1. Running time.

Masters Workers Files Records Running
time(sec)

1 1 1 8.928 198
1 10 1 8.928 200
1 1 4 34.560 220
1 10 4 34.560 201
1 1 8 69.984 248
1 10 8 69.984 211
1 1 12 105.120 268
1 10 12 105.120 223
1 1 60 525.600 521
1 10 60 525.600 281
1 1 120 1.051.200 846
1 10 120 1.051.200 289

The data used in our experiment is raw data acquired through
Eugene monitoring station (Vignola, 2015a). The structure of
the file and the code meaning is provided at (Vignola,
2015b).

The header line in the file contains the location code, the
year, the measured element code. Each following line
contains the day of the year, the time of day in military
format, the value measured by sensor. The data input was
chosen N files where N = 1; 4; 8; 12; 60; 120 (data
corresponding to 1 month, 4 months, 8 months, 1 year, 5
years, 10 years). Table 1 summarizes the running time in
seconds for each scenario.

In Fig 5 are represented three plots: Running Time for 1
worker (𝑟𝑡01) vs. 10 workers (𝑟𝑡10), Processing Rate and
Speedup, according with the following definitions:

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑒 =
𝑖𝑛𝑝𝑢𝑡𝑆𝑖𝑧𝑒

𝑟𝑢𝑛𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑟𝑡01
𝑟𝑡10

For an input consisting of up to 12 files, the difference
between the running time on 1 worker vs. 10 workers is not

significant. That can be explained by the fact that the load is
not big enough to exploit the computational capacity of the
10 workers cluster and even 1 worker is enough for this input
dimension. In a 10 workers cluster there is an additional
payload for network transfer of data between mappers and
reducers. The performance dramatically increases with the
input getting bigger (example: for 120 files which
corresponds to observations of one parameter at 5 minutes
interval for 10 years) we observed a running time almost 3
times lower on the 10 workers cluster, since 1 worker does
not have enough resources to handle this input faster. It is
expected that increasing much more the input we will see a
higher ratio between running time on 10 workers vs. running
time on 10 workers.

Fig. 5. Experimental results: Running Time, Processing Rate
and Speedup.

We define efficiency as:

𝐸 =
𝑁𝑖
𝑁𝑚1

where 𝑁𝑖 is the number of input records for Map1() and 𝑁𝑚1
is the number of intermediate files that are produced after the
execution of Map1(). If we consider that we have a number
of 𝑛𝑓 input files, each file having 𝑛 records and the sample
size is 𝑠 we obtain:

𝐸 =
𝑛 ∗ 𝑛𝑓

𝑛𝑓 ∗ (𝑛 + 𝑛𝑓 ∗ 𝑠)
=

1

1 + 𝑠 ∗
𝑛𝑓
𝑛

For our experiments, we obtained an efficiency E in the range
78.81% (for 𝑛𝑓 = 120) to 99.77% (for 𝑛𝑓 = 1). Given a
number 𝑛𝑓 which corresponds to a certain efficiency 𝐸1 it is
useful to know the increase ∆𝑛𝑓 in the number of input files
that will correspond to an efficiency 𝐸2 > 𝛿 where 𝛿 is a
target minimum efficiency. Using the equation above, we
obtain:

∆𝑛𝑓 <
𝑛 ∗ (1 − 𝛿) − 𝛿 ∗ 𝑠 ∗ 𝑛𝑓

𝛿 ∗ 𝑠

CONTROL ENGINEERING AND APPLIED INFORMATICS 69

For example, if 𝑛𝑓 = 50 input files we would like to know
how many additional input files we can add so finally we get
an efficiency over 𝛿 = 80%. We obtain in this case ∆𝑛𝑓 < 61
so we can add up to 60 more files.

5. CONCLUSIONS

In this paper we discussed the importance of using Hadoop
storage and distributed processing framework for large data
sets acquired in various scientifically domains including
environmental sciences. We also presented the related work
for detecting outliers and then proposed an algorithm for
chained MapReduce tasks to compute distance based ranks
for outliers in time series. Due to its distributed nature, the
proposed algorithm is highly scalable for large volumes of
data. By processing in parallel, there is achieved a significant
speed up compared with the original sequential algorithm.
Our implementation provides also fault tolerance and load
balancing. For future improvements of performance, we
consider aggregating more input files and presenting to
Map1() fewer files but with a bigger size, ideally each input
file being

3
4
∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 ≤ 𝑓𝑖𝑙𝑒𝑆𝑖𝑧𝑒 ≤ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒

where 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 refers to the Hadoop block size (by default
64MB). Having less files of bigger size addresses problems
of Name Node (such as bigger RAM consumption, each
block corresponding to an object in memory, increased delay
when Name Node starts, Network impact) and also of
MapReduce (disk I/O, busy queues of map tasks).

The second possible optimization refers to the known
problem that using default InputFormat implementation in
case of compute-intensive applications, the fairness in
scheduling is neglected and leads to over-usage of the nodes
where the data is physically located while the rest are left
underutilized. In HDFS the location is a set of nodes where
the block resulting from the split phase is physically located.

On the other hand, caring only about fairness leads to
scarifying data locality (thus performance) because a job
might be scheduled to execute on a node that is far away
from its data. As described by (Zaharia et al., 2010) the fair
scheduler should be delayed to address the conflict between
locality and fairness. A job that is scheduled to execute on a
node that does not have local data for it waits for a small
amount of time (few seconds) until an opportunity to be
scheduled appears on a node that has local data for it.

One direct use of proposed method is in the CyberWater
systems, which is a cyber-infrastructure with the main goal to
offer a solution for water quality in respect to the pollution
phenomena studied on rivers network, first introduced by
(Ciolofan et al., 2013). In this system an alert service was
introduced, being a typical Publish/Subscribe application.
The users can subscribe to receive notifications on their
mobile devices (mobile phones, smartphones, tablets, etc.) or
on their computers, via email. The Alerts Service depends
directly on the other Services, like Propagation Analysis
Service and Prediction Service, since the analyzed and
predicted values are used as a basis for the action of sending

notifications. Here, the main role of detecting outliers is to
prevent false-positive situation and to avoid false alarms. For
the prediction module, where different time series are used,
we need to eliminate all outliers from the training set. Only in
this way we can minimize the error for predicted values.

Another applications of detecting outliers can be found to a
variety of domains including mobile computing, smart cities,
forensics and eHealth. The proposed processing model can be
integrated in all these domains as a preprocessing phase for
all involved time series.

ACKNOWLEDGMENT

The research presented in this paper is supported by projects:
CyberWater grant of the Romanian National Authority for
Scientific Research, CNDI-UEFISCDI, project number
47/2012; clueFarm: Information system based on cloud
services accessible through mobile devices, to increase
product quality and business development farms PN-II-PT-
PCCA-2013-4-0870.

We would like to thank the reviewers for their time and
expertise, constructive comments and valuable insight.

REFERENCES

Barbierato, E., Dei Rossi, G.L., Gribaudo, M., Iacono,
M., and Marin, A. (2013). Exploiting product forms
solution techniques in multiformalism modeling.
Electron. Notes Theor. Comput. Sci., 296, 61–77.
doi:10.1016/j.entcs.
2013.07.005.

Barbierato, E., Gribaudo, M., and Iacono, M. (2011).
Defining formalisms for performance evaluation with
simthesys. Electron. Notes Theor. Comput. Sci., 275,
37–51. doi:10.1016/j.entcs.2011.09.004.

Breunig, M., Kriegel, H.P., Ng, R.T., and Sander, J. (2000).
Lof: Identifying density-based local outliers. In
Proceedings of the 200 SIGMOD International
Conference on Management of Data, 93–104. ACM.

Ciolofan, S., Mocanu, M., and Ionita, A. (2013). Cyber
Infrastructure architecture to support decision taking
in natural resources management. In Control Systems
and Computer Science (CSCS), 2013 19th International
Conference on, 617–623. doi:10.1109/CSCS.2013.17.

Ciolofan, S., Mocanu, M., Pop, F., and Cristea, V. (2014).
Improving quality of water related data in a Cyber
Infrastructure. In IWOCPS - Third International
Workshop on Cyber Physical Systems, Romanian
Academy.

D’Arienzo, M., Iacono, M., Marrone, S., and Nardone, R.
(2013). Estimation of the energy consumption of
mobile sensors in WSN environmental monitoring
applications. In Proceedings of the 2013 27th
International Conference on Advanced Information
Networking and Applications Workshops, WAINA ’13,
1588–1593. IEEE Computer Society, Washington, DC,
USA. doi:10.1109/ WAINA.2013.33.

Dean, J. and Ghemawat, S. (2008). Mapreduce:
Simplified data processing on large clusters. Commun.
ACM, 51(1), 107–113.

70 CONTROL ENGINEERING AND APPLIED INFORMATICS

Dean, J. and Ghemawat, S. (2010). Mapreduce: a flexible
data processing tool. Commun. ACM, 53(1), 72–77.

George, L. (2011). HBase: the definitive guide. O’Reilly
Media, Inc.

Google (2015). Architecture: Hadoop on google cloud
platform. URL https://cloud.google.com/solutions/
architecture/hadoop.

Haloi, S. (2015). Apache ZooKeeper Essentials.
Community experience distilled. Packt Publishing.

Han, J., Kamber, M., and Pei, J. (2011). Data Mining:
Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 3rd edition.

Jitkajornwanich, K., Gupta, U., Shanmuganathan, S.,
Elmasri, R., Fegaras, L., and McEnery, J. (2013).
Complete storm identification algorithms from big raw
rainfall data using mapreduce framework. In Big Data,
2013 IEEE International Conference on, 13–20.

Knorr, E.M. and Ng, R.T. (1998). Algorithms for mining
distance-based outliers in large datasets. In A. Gupta,
O. Shmueli, and J. Widom (eds.), VLDB’98,
Proceedings of 24rd International Conference on Very
Large Data Bases, August 24-27, 1998, New York
City, New York, USA, 392–403. Morgan Kaufmann.

Kriegel, H.P., S hubert, M., and Zimek, A. (2008). Angle-
based outlier detection in high-dimensional data. In
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’08, 444–452. ACM, New York, NY, USA.

Madden, S. (2012). From databases to big data. IEEE
Internet Computing, 16(3), 4–6.

Morariu, O., Morariu, C., and Borangiu, T. (2013).
Transparent real time monitoring for multi-tenant
j2ee applications. Journal of Control Engineering and
Applied Informatics, 15(4), 37–46.

Morariu, O., Morariu, C., Borangiu, T., and Raileanu, S.
(2014). Smart resource allocations for highly adaptive
private cloud systems. Journal of Control Engineering
and Applied Informatics, 16(3), 23–34.

NIST/SEMATECH (2015). e-handbook of statistical
methods. URL http://www.itl.nist.gov/div898/
handbook/.

Nita, M.C., Pop, F., Voicu, C., Dobre, C., and Xhafa, F.
(2015). Momth: multi-objective scheduling algorithm
of many tasks in hadoop. Cluster Computing, 1–14.

Olston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. (2008). Pig latin: A not-so-foreign
language for data processing. In Proceedings of the
2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, 1099–1110. ACM,
New York, NY, USA.

Owen, S., Anil, R., Dunning, T., and Friedman, E.
(2011). Mahout in Action. Manning Publications Co.,
Greenwich, CT, USA.

Pasupuleti, P. (2014). Pig Design Patterns. Packt
Publishing.

Patrascu, A. and Patriciu, V.V. (2014). Logging system
for cloud computing forensic environments. Journal of
Control Engineering and Applied Informatics, 16(1),
80–88.

Pop, F., Ciolofan, S., Negru, C., Mocanu, M., and
Cristea, V. (2014). A bio-inspired prediction method for
water quality in a cyber-infrastructure architecture. In
2014 Eighth International Conference on Complex,
Intelligent and Software Intensive Systems (CISIS),
367–372. IEEE.

Ramaswamy, S., Rastogi, R., and Shim, K. (2000).
Efficient algorithms for mining outliers from large data
sets. SIGMOD Rec., 29(2), 427–438.

Sfrent, A. and Pop, F. (2015). Asymptotic scheduling for
many task computing in big data platforms. Information
Sciences.

Singh, K. and Upadhyaya, S. (2012). Outlier detection:
applications and techniques. International Journal of
Computer Science Issues, 9(1), 307–323.

Song, W., Wang, L., Ranjan, R., Kolodziej, J., and
Chen, D. (2015). Towards modeling large-scale data
flows in a multidatacenter computing system with petri
net. Systems Journal, IEEE, 9(2), 416–426.
doi:10.1109/ JSYST.2013.2283954.

Stefan, G.M. (2014). Mapreduce - an integrative
paradigm in cyber-physical systems. In IWOCPS - Third
International Workshop on Cyber Physical Systems,
Romanian Academy.

Sugiyama, M. and Borgwardt, K. (2013). Rapid distance-
based outlier detection via sampling. In C. Burges, L.
Bottou, M. Welling, Z. Ghahramani, and K.
Weinberger (eds.), Advances in Neural Information
Processing Systems 26, 467–475. Curran Associates,
Inc.

Tarboton, D.G., Horsburgh, J.S., and Maidment, D.R.
(2007). Cuahsi community observations data model
(odm) version 1.0 design specifications.

Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P.,
Anthony, S., Liu, H., Wyckoff, P., and Murthy, R.
(2009). Hive: A warehousing solution over a map-
reduce framework. Proc. VLDB Endow., 2(2), 1626–
1629.

Valentini, G.L., Lassonde, W., Khan, S.U., Min-Allah, N.,
Madani, S.A., Li, J., Zhang, L., Wang, L., Ghani, N.,
Kolodziej, J., Li, H., Zomaya, A.Y., Xu, C.Z., Balaji, P.,
Vishnu, A., Pinel, F., Pecero, J.E., Kliazovich, D., and
Bouvry, P. (2013). An overview of energy efficiency
techniques in cluster computing systems. Cluster
Computing, 16(1), 3–15.

Vignola, F. (2015a). Oregon srml, eugene monitoring
station info.

URL http://solardat.uoregon.edu/ Eugene.html.
Vignola, F. (2015b). Oregon srml, the structure of archive

file.
URL http://solardat.uoregon.edu/ ArchivalFiles.html.
Vignola, F. (2015c). Solar radiation monitoring

laboratory, university of oregon, solar data archives.
URL http:// solardat.uoregon.edu/SelectArchival.html.

Voicu, C., Pop, F., Dobre, C., and Xhafa, F. (2014). Momc:
Multi-objective and multi-constrained scheduling
algorithm of many tasks in hadoop. In P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC), 2014
Ninth International Conference on, 89–96. IEEE.

http://www.itl.nist.gov/div898/�
http://www.itl.nist.gov/div898/�
http://solardat.uoregon.edu/�
http://solardat.uoregon.edu/�

CONTROL ENGINEERING AND APPLIED INFORMATICS 71

Wang, J., Abid, H., Lee, S., Shu, L., and Xia, F. (2011). A
secured health care application architecture for Cyber
Physical systems. Journal of Control Engineering and
Applied Informatics, 13(3), 101–108.

Wang, L., Tao, J., Ma, Y., Khan, S.U., Kolodziej, J., and
Chen, D. (2013). Software design and implementation
for mapreduce across distributed data centers. Appl.
Math, 7(1L),85–90

Wang, L., Tao, J., Marten, H., Streit, A., Khan, S.U.,
Kolodziej, J., and Chen, D. (2012). Mapreduce across
distributed clusters for data-intensive applications. In
Proceedings of the 2012 IEEE 26th International Parallel
and Distributed Processing Symposium Workshops &
PhD Forum, IPDPSW ’12, 2004–2011. IEEE Computer
Society, Washington, DC, USA.

Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K.,
Shenker, S., and Stoica, I. (2010). Delay scheduling: A
simple technique for achieving locality and fairness in
cluster scheduling. In Proceedings of the 5th European
Conference on Computer Systems, EuroSys ’10, 265–278.
ACM, New York, NY, USA. doi:10.1145/1755913.
1755940.

Zhao, J., Wang, L., Tao, J., Chen, J., Sun, W., Ranjan, R.,
Kolodziej, J., Streit, A., and Georgakopoulos, D. (2014).
A security framework in g-hadoop for big data computing
across distributed cloud data centres. Journal of Computer
and System Sciences, 80(5), 994–1007.

	Rapid Parallel Detection of Distance-based Outliers in Time Series using MapReduce
	Sorin N. Ciolofan, Florin Pop, Mariana Mocanu, Valentin Cristea
	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	Fig. 2. Segmentation of the data space.
	Fig. 4. Hadoop on Google Cloud Platform, described by
	Table 1. Running time.
	ACKNOWLEDGMENT
	REFERENCES

