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Abstract: Time series analysis is crucial in a large number of knowledge domains ranging from micro 
and macro economy, industry, tourism, health to hydrology, meteorology, agriculture, demography, etc. 
The interest in efficiently and meaningfully processing of time series data increased in the last decade 
with the spreading of sensor networks and Cyber-Physical Systems which produce huge amounts of 
measured data. The outlier detection is a key issue for Quality Assurance of time series data and its goal 
is to detect the objects that present a very different behavior from the expected one. Once identified, these 
objects are either removed or corrected. In this paper we propose a highly scalable parallel data 
processing algorithm for outlier ranking based on the distance between data objects. As opposed to the 
current existing sequential implementations, the provided algorithm is based on the parallel processing 
employed by the MapReduce paradigm. Using real monitored solar data for experimental validation we 
show the dramatically improvement of running time for large archives of time series (millions of records 
order). 
Keywords: Time Series; Outliers; Distributed Processing; MapReduce; Data Mining. 

 

1. INTRODUCTION 

The proliferation of Internet searches, social media, Internet 
of Things (IoT), sensing devices in the context of smart cities 
as well as the unstructured data explosion (video, audio, 
images, etc.) require a shift in data management from the data 
warehouses and them distribute processing applications to a 
holistic approach combining distributed storage, distributed 
processing, artificial intelligence, multiprocessors systems, 
aspects mentioned by (Pasupuleti, 2014). The traditional 
systems failed to address the challenges posed by Big Data in 
terms of data availability, concurrency, fault tolerance and 
task scheduling. A solution for task scheduling for many task 
computing, which is useful for Big Data processing was 
presented by (Sfrent and Pop, 2015). Relational databases, 
especially commercial ones (Teradata, Netezza, Vertica, etc.) 
can handle to some extent the volume problem of Big Data 
but cannot deal with the other two (velocity and variety), as 
(Madden, 2012) state. On the other side, a theoretical solution 
for large-scale data-sets modeling using Petri nets was 
introduced by (Song et al., 2015). They proposed four new 
methods to meet the new features of data transmission among 
datacenters. 

Apache Hadoop is a set of open source applications that are 
used together in order to provide a Big Data solution for both 
storage and parallel processing. The two main components 
mentioned above are in Hadoop, HDFS and YARN. Hadoop 
Distributed File System (HDFS) is organized in clusters 
where each cluster consists of a name node and several 
storage nodes. A large file is split into blocks and name node 
takes care of persisting the parts on data nodes. The name 
node maintains metadata about the files and commits updates 
to a file from a temporary cache to the permanent data node. 

The data node does not have knowledge about the full logical 
HDFS file; it handles locally each block as a separate file. 

In Hadoop, fault tolerance is achieved through replication; 
optimizing the communication by considering the location of 
the data nodes (the ones located on the same rack are 
preferred). YARN is an acronym for MapReduce v2.0. 
YARN implements a master/slave execution of processes 
with a JobTracker master node and a pool of TaskTrackers 
which do the work. The two main responsibilities of the 
JobTracker respectively management of resources and job 
scheduling/monitoring are handled by two separate daemons. 
There is a global resource manager (RM) and a per 
application Application Master (AM). The slave is a per node 
entity named Node Manager (NM) which is doing the 
computations. The AM negotiates with the RM for resources 
and monitors task progress. 

To create a Big Data ecosystem other components are added 
on top of Hadoop: configuration management (Zookeeper, 
presented by (Haloi, 2015)), columnar organization (HBase, 
discussed in (George, 2011)), data warehouse querying 
(Hive, with its highlights presented by (Thusoo et al., 2009)), 
easier development of MapReduce programs (Pig, presented 
by (Olston et al., 2008)), machine learning algorithms 
(Mahout, described in (Owen et al., 2011)). According with 
(Dean and Ghemawat, 2008), MapReduce is a programming 
model and its implementation for processing large data sets. 
The programs are automatically parallelized and run on 
clusters of machines. 

However, as (Stefan , 2014) shown, this paradigm is not new 
in the Computer Science landscape, the theoretical roots of 
MapReduce can be found back in the 1936 in Stephens 
Kleene general recursive functions. The concept of map() 
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and reduce() functions is present in elementary circuits 
design, Backuss functional programming model, Lisp and 
Scheme and finally, nowadays, in Cloud Computing. The 
overall principle is presented in Fig 1. 

 
Fig. 1. MapReduce overview presented by ( Dean and 
Ghemawat, 2010). 

The input files are split into fragments (16-64Mb) and then 
each split is parsed according to InputFormat/RecordReader 
and pairs (key, value) are generated and presented to the 
custom map() function. JobTracker determines which 
TaskTrackers are available and based on their proximity to 
data sources, data is sent for processing. The map() function 
produces a new set of (key, value) elements which are written 
to the memory buffer. Optional combine() function can be 
used to reduce values on a key. The partition() function is 
applied to each key to determine the index of the reducer that 
will handle the corresponding value. When all records are 
finished, the memory buffer is flushed into the corresponding 
partitions built on local disk of the mapper machine. When 
JobTracker is notified that some map tasks finished their 
work it delegates reduce task trackers to download remote 
data from the files of the mappers and concatenate into one 
file (sorted by key) that will represent the input of the 
reduce() function which computes the aggregated value and 
writes it to the final file on HDFS. If initially MapReduce 
was used for Web data processing, later the areas where 
Hadoop proved its utility greatly extended to many domains 
including environmental sciences (e.g. hydrology), being 
subject to many optimization approaches, as (Nita et al., 
2015; Voicu et al., 2014) proposed. 

In (Jitkajornwanich et al., 2013), the authors speed up the 
storm identification using MapReduce instead of DFS (depth 
first search) traversal. For the locally storm the authors claim 
the new algorithm is 19 times faster and for hourly storms, 15 
times faster. Also, they use as input directly the raw rainfall 
data file rather than storing it in ODM relational database, 
which is how they did in a previous approach and noticed 
significant disk I/O latency, results discussed by (Tarboton et 
al., 2007). 

The paper is further organized as follows: Section 2 presents 
related work from outlier detection perspective, pointing 
advantages and drawbacks of each class of methods. Section 

3 discusses the proposed algorithm for parallel distance based 
outlier detection while Section 4 presents the experimental 
validation of the algorithm and the results of the tests. 
Section 5 is dedicated to conclusions and future perspectives. 

2. BACKGROUND AND RELATED WORK 

Anomalies (or outliers) are data objects behaving far different 
from expected. Detection of such objects is very important in 
many practical applications: medical and healthcare, 
environmental resources management, public safety, fraud 
detection, industry processes, etc. Noise is a random error or 
variance which occurs in a measured variable and represents 
a different concept. Because it can look similar to outliers, 
often a confusion between the two concepts could arise, but 
in general the amount of error is not too far away from the 
expected value in the case of noise while in the case of 
outliers it is too far away. On the other hand, noise can alter 
the data set quality and make difficult to recognize outliers. It 
worth to be noted that outliers can have a very high impact on 
the accuracy of an analysis. Even the percentage of outliers is 
very low, they can play a key role in the application domain. 

Anomalies can be detected in private or public Clouds using 
logging systems (see solutions presented by (Patrascu and 
Patriciu, 2014; Morariu et al., 2014), in real-time application 
monitoring (as is described by (Morariu et al., 2013) and 
represents an important aspect of Cyber Physical Systems 
security, approaches considered by (Wang et al., 2011). 

Though the definition of outliers may seem simple, in 
practice there are major difficulties for detecting them, as 
Singh and Upadhyaya (2012) exemplify. There is often 
impossible to delimit a precise boundary between “normal” 
and outlier behavior. Malicious users can “dis-guise” outliers 
to appear like normal values. The notion of outliers is very 
different in respect to the application domain (in medicine a 
small variation of body temperature is considered an outlier 
while on stock market can be taken as normal). Because of 
these difficulties rather than trying to provide a universal 
method the detection techniques try to solve a specific 
problem. 

According with (Han et al., 2011), outliers can be categorized 
in three main categories: 

(1) global outliers: the value of the candidate differs 
significantly from all the other values; 

(2) contextual outliers: the candidate can be an outlier 
only in some circumstances; and 

(3) collective outliers: a group of values that together 
deviates significantly from the rest of the data set 
while the individual objects that compose the 
collective outlier may not be themselves outliers. 

It worth to mention that a data object can present both 
behavioral attributes and contextual attributes. A global 
outlier can be viewed as a contextual outlier with an empty 
set of contextual attributes. Methods of outlier detection fit in 
one of the following categories: 

A. supervised methods, 

B. unsupervised methods, and 
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C. semi supervised methods. 

In the first category, a domain expert can label the data, 
deciding which values are “normal” and which “abnormal”. 
Based on this initial categorization a machine can learn 
further how to label future values. In the second category 
labels applied by a human expert are not available and to be 
able to decide which data can be considered outlier are used 
proximity based methods or clustering methods (described 
below). In the semi supervised methods labels are available 
only for a small subset of the initial data. 

The data that has only one variable is called univariate while 
data involving two or more variables is called multivariate. 
According to the assumptions made regarding when a value 
is considered abnormal another classification can be made 
into: statistical methods (data is assumed to follow a certain 
model (e.g Gaussian distribution) so data that not fit into that 
model is considered “abnormal”; in our papers (Ciolofan et 
al., 2014; Pop et al., 2014) we discussed the parametric 
statistical methods in detail, proximity based methods 
(outliers are identified based on the distance between them 
and their neighbors) and cluster based methods (normal 
values are supposed to belong to large and dense clusters 
while outliers are not included in a cluster or form a low 
density small cluster, (see Breunig et al., 2000), angle based 
outlier detection (ABOD, presented by (Kriegel et al., 2008)), 
based upon the idea that if object x is an outlier then the angle 
between pairs of the remaining objects become small). The 
advantage of this last method is that the algorithm is 
parameter free but the drawback refers to its O(n2) 
complexity. 

In the statistical parametric methods for univariate variables, 
based on the mean and standard deviation, one can estimate 
the probability that a certain measured value can occur in 
reality. If that probability is low (0.15%) the value can be 
labeled as outlier. Another straightforward test to check one 
outlier at a time is Grubbs test (also called "maximum 
normed residual test", according with (NIST/SEMATECH, 
2015). In this approach the values are sorted from the lowest 
value to the highest and then it is checked if the maximum (or 
minimum) value is an outlier. Tietjen-Moore test is suitable if 
exactly k anomalies are suspected, either in the upper tail or 
in the lower tail or in both tails of the sorted array. The 
drawback is that k has to be specified in advance. If the value 
k is not known, then the ESD test (Extreme Studentized 
Deviate) can be applied assuming an upper limit for k is 
specified. For the multivariate variables, the problem can be 
reduced to the detection of outliers for univariate variable 
(e.g using Mahalanobis distance). 

In the non parametric methods the statistical model is not 
known beforehand. Based on the input data, efforts are made 
to infer the model. In the histogram method first step is the 
creation of the histogram and second step is the mapping of 
the tested value to one of the histograms slots. Another 
method is to approximate the probability density function 
using a kernel function: 

𝑓ℎ(𝑥) =
1
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In the above equation, 𝑓ℎ is the estimated probability density 
for a variable 𝑥, 𝑛 is the size of the dataset, ℎ is a smoothing 
parameter and 𝐾() is the kernel function (e.g uniform, 
triangular, Epanechnikov, biweight, triweight, Gaussian, 
etc.). In practice a Gaussian kernel function with mean 0 and 
standard deviation 1 is often used such as: 

𝐾(𝑥) =
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The kernel is a weighting function used in non-parametric 
estimation techniques with the following properties: 

• Positive definition: 𝐾(𝑥) ≥ 0; 
• ∫ 𝐾(𝑥)𝑑𝑥𝑅 = 1; 

• Symmetry to the origin: ∫ 𝑥𝐾(𝑥)𝑑𝑥𝑅 = 0; 
• Finite second moment, written as: 𝜇2(𝐾) =

∫ 𝑥2𝐾(𝑥)𝑑𝑥𝑅 < ∞. 
In general, any function with the mentioned properties can 
be used as kernel estimation. To select a scale that is 
appropriate for a specific set of data we can introduce ca 
scaling factor 𝜆 > 0 and re-define the kernel as: 

𝐾�(𝑥) = 𝜆𝐾(𝜆𝑥) 

Using clustering for anomalies detection, we face with at 
least two disadvantages. First, clustering is a computationally 
very expensive and do not scale efficiently for large sets of 
input data. Besides that, one has to first process the majority 
of data (normal values which are not of primary interest here) 
in order to, finally, get to the outliers. Secondly, some 
methods of clustering (such as 𝑘-means technique) are not 
suitable for outlier detection since they are negatively 
affected by outliers and noise in the input data. 

Historically, (Knorr and Ng, 1998) was the first article to 
define an algorithm for detection of distance based outliers. 
An object o is considered distance based outlier DB(𝑀, 𝐷) if 
it has less than 𝑀 objects located in its 𝐷-neighborhood. 
Formally this can be expressed as: 

‖{𝑜′|𝑑𝑖𝑠𝑡(𝑜, 𝑜′) ≤ 𝐷�}‖ ≤ 𝑀 

where 𝑑𝑖𝑠𝑡(𝑜, 𝑜′) is the distance between the two objects (e.g 
euclidean distance), 𝐷 and 𝑀 are two user supplied 
parameters, 𝑀 being far less than 𝑁 (the total number of 
objects). Further we consider that data is a time series where 
at any instant in time t we get at most one real number value. 
Hence,  

𝑑𝑖𝑠𝑡(𝑜, 𝑜′) = |𝑜 − 𝑜′| 

The algorithm rather than verifying for each point how many 
neighbors it has in its 𝐷-neighborhood, groups the data into 
segments (cells) and asserts whether all objects in that 
segment are outliers or not. The data space is divided in 
segments of length 𝐷/2 and points are mapped to the 
corresponding segment according to their values (Fig 2). For 
a specific segment 𝐶 we note 𝐿1(𝐶) (level 1 of 𝐶) the two 
adjacent segments and 𝐿2(𝐶) (level 2 of 𝐶) the segments 
situated at one segment distance from 𝐶. The bullets 
represent values of time series data and the stacked bullets 
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means the same value which occurs at different timestamps. 
Further is defined: 

𝑃(𝐶) = 𝐶 ∪ 𝐿1(𝐶) ∪ 𝐿2(𝐶) 

the partition composed of the five segments and 𝐶 is named 
the “main segment of 𝑃”. The following properties hold: 

(1) (∀𝑥 ∈ 𝐶) ∧ (∀𝑦 ∈ 𝐶′|𝐶′ ∈ 𝐿1 �) ⟹𝑑𝑖𝑠𝑡(𝑥,𝑦) ≤ 𝐷; 
(2) if (𝐶′ ∉ 𝐿1) ∧ (𝐶′ ∉ 𝐿2) ∧ (𝐶′ ≠ 𝐶) ∧ (𝑥 ∈ 𝐶,𝑦 ∈

𝐶′) ⟹𝑑𝑖𝑠𝑡(𝑥,𝑦) > 𝐷; 

Based on these properties we can infer following rules which 
will help in process of determining the outliers: 

• R1 : If 𝐶 contains more than 𝑀 points then none of 
the objects in 𝐶 is outlier; 

• R2 : If C and 𝐿1(𝐶) contains more than 𝑀 points 
then none of the objects in 𝐶 is outlier; 

• R3 : If C and 𝐿1(𝐶)and 𝐿2(𝐶) contains less than 𝑀 
points then every point in 𝐶 is outlier; 

• R4 : A 𝐿1 neighbor of a cell C as in rule R1 has none 
of the objects outlier because we can find more than 
𝑀 points at a distance less than 𝐷 (the points in 𝐶). 

To elaborate the algorithm and distinguish between segments 
of type R1 and segments of type R4 the first one are marked 
with red and the second with pink. This algorithm has two 
main drawbacks: it requires the parameters 𝐷 and 𝑀 to be 
supplied in advance (𝐷 is usually hard to estimate apriori) 
and, secondly, it does not provide a measure of outlierness. 

 
Fig. 2. Segmentation of the data space. 

(Ramaswamy et al., 2000) proposed to measure the 
outlierness by the 𝑘𝑡ℎ nearest neighbor (𝑘𝑡ℎ-NN) distance, 
giving a ranking of outliers rather than a binary classification. 
If the rank 𝑞(𝑥) is defined as being the distance between 𝑥 
and the 𝑘𝑡ℎ nearest neighbor then it can be made a connection 
with the Knorr-Ng algorithm and shown that the two 
algorithms are equivalent and 

𝐷𝐵(𝑀,𝐷) = {𝑥|𝑞(𝑥) ≥ 𝐷�} 

The complexity of this algorithm is 𝑂(𝑛2). 

(Sugiyama and Borgwardt, 2013) introduced the novel 
idea of using an on-time random sample as a reference set 
to compute the ranks of outliers. Best results are obtained 
for a sample of 𝑠 = 20 objects. The input parameter is s, 
the number of objects in the sample 𝑆. Each object has a 
rank associated: 

𝑞𝑆𝑝 = 𝑚𝑖𝑛{𝑑(𝑥, 𝑥′)|𝑥′ ∈ 𝑆(𝑠)�}. 

Their algorithm is Θ(𝑛𝑚𝑠) time complexity (𝑛 is total 
number of objects, 𝑚 is dimension number, and 𝑠 is 
sample size) and is much faster than the actual state of the 
art (2 to 6 orders of magnitude) being the most effective from 
the detection capability point of view. All these algorithms 

presented above are sequential, missing the benefits of 
parallel processing. To overpass this major disadvantage, we 
discuss in the next section a MapReduce algorithm based on 
the idea of outlier detection by sampling.  

Detecting outliers can be applied for specific performance 
evaluation of heterogeneous systems, solution presented by 
(Barbierato et al., 2011; Barbierato et al., 2013), modeling 
Apache Hive based applications in Big Data architectures, 
where outliers’ tests must be removed from data sets, solution 
presented by (Barbierato et al., 2013), or estimation of the 
energy consumption of mobile sensors, model presented by 
(D'Arienzo et al., 2013). Related to the last application, an 
overview of energy efficiency techniques in datacenters was 
presented by (Valentini et al., 2013). 

Facing with wide distributed data, a MapReduce framework 
that aims to enable large-scale distributed computing across 
multiple clusters was presented by (Wang et al., 2012). 
Outliers detection can be done on local time series or on 
distributed data coming from different sources (sensors, 
drones, etc.). Using Hadoop for detecting outliers in time 
series, we face with a big data computing computing across 
distributed cloud data centres, where data access and security 
is very important. A solution that describe a security 
framework for Hadoop processing was introduced by (Zhao 
et al., 2014), with design and implementation presented by 
(Wang et al., 2013). 

4. THE OUTLIERS DETECTION ALGORITHM IN TIME 
SERIES BASED ON MAPREDUCE  

We propose an outlier detection algorithm using MapReduce, 
composed of two chained map-reduce tasks (Fig 3). First 
problem is to compute in parallel a unique random sample of 
size 𝑠 from the entire data set of 𝑛 objects and to pass it to 
each mapper. 

 
Fig. 3. Chained MapReduce tasks to compute the outliers 
ranks. 
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The naive approach would be to gather all 𝑛 data objects in a 
Reducer and then randomly pick 𝑠 elements. However, this 
has the disadvantage of the amount of data sent by mappers.  

 

 
In our implementation we will use a reservoir sampling 
method where each mapper associates a random number with 
each data object it has access to, and then select the local top 

𝑠 objects and sent to a reducer. The reducer will choose the 
final random sample as being the top 𝑠 objects among all sets 
of local top 𝑠 objects. 

The Outliers Detection in Time Series Algorithm is presented 
using MapReduce paradigm in Alg. 1. MAP1() function is 
responsible for preparing the local top 𝑠 objects. In lines 6-9 
the input file is parsed line by line and data objects are 
initialized. Then, in a hash map data structure (hMap) the 
object is put as a value, the key being the random number 
generated (line 10). The observed data is emitted (line 11) 
along with the local sample (line 21) after the prior sorting of 
the hash map on keys (line 15). 

REDUCE1() uses three utility data structures: samplePool 
which consists of all sample objects sent by all mappers, 
observationsPool which stores the corresponding measured 
objects and globalSample which uses the samplePool to 
extract the global random sample of size s with respect to the 
entire set of measured data. The function has two main 
responsibilities: 

(1) to create the global random sample retaining the top 
s objects from samplePool list (line 36), and 

(2) to compute for each observed data object the 
distances from this object to all objects included in 
the sample (lines 37-41). The minimum of these 
distances is then emitted as key for value data object 
(line 43). The intermediate files contain the data 
objects and their rank, without being sorted on rank. 

MAP2() and REDUCE2() are just two identity map/reducers 
used to sort the data from the intermediate files based on the 
rank. The final output files contain data sorted on the rank. 

4. EXPERIMENTAL RESULTS 

To test the performance of algorithm described above we 
used a Hadoop 1.2.1 cluster deployed on Google Compute 
Engine Cloud facilities. Each node is n1-standard-2 type 
having 2 VCPUs, 7GB RAM and 500 GB disk size. 

The Hadoop cluster described in Fig. 4 has one Google 
Compute Engine instance used as the Hadoop master node 
which contains the HDFS NameNode and the MapReduce 
JobTracker. Also is possible to have Hive and Pig installed 
here. The workers in the cluster are Google Compute Engine 
instances which can be configured depending on the 
requirements for RAM and CPU's. Once created, the worker 
nodes will have the Hadoop HDFS DataNode and 
MapReduce TaskTracker software installed. Google Cloud 
Storage (GCS) provides the storage support for input/output 
files used in the MapReduce jobs. The link between the 
worker instances and GCS is possible via the Google Cloud 
Storage Connector for Hadoop. GCS is used for file storage 
instead of HDFS because it provides quicker startup, less 
maintenance, high availability and interoperability with other 
services, as specified in (Google, 2014). 

We deployed two configurations, the first one having 1 
master node and 1 worker node and the other having 1 master 
and 10 workers. The input consisted of real observations of 
solar data made publicly by Vignola (2015c) such as 
direct/diffuse solar radiation, spectral data, meteorological 
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data (total rainfall, barometric pressure, humidity, snow 
depth, etc.). Input data for our experiment consists of files of 
size approximately 1.2Mb each file containing data measured 
during one month using a 5 minutes interval. 

 
Fig. 4. Hadoop on Google Cloud Platform, described by 
(Google, 2014). 

Table 1. Running time. 

Masters Workers Files Records Running 
time(sec) 

1 1 1 8.928 198 
1 10 1 8.928 200 
1 1 4 34.560 220 
1 10 4 34.560 201 
1 1 8 69.984 248 
1 10 8 69.984 211 
1 1 12 105.120 268 
1 10 12 105.120 223 
1 1 60 525.600 521 
1 10 60 525.600 281 
1 1 120 1.051.200 846 
1 10 120 1.051.200 289 

 

The data used in our experiment is raw data acquired through 
Eugene monitoring station (Vignola, 2015a). The structure of 
the file and the code meaning is provided at (Vignola, 
2015b).    

The header line in the file contains the location code, the 
year, the measured element code. Each following line 
contains the day of the year, the time of day in military 
format, the value measured by sensor. The data input was 
chosen N files where N = 1; 4; 8; 12; 60; 120 (data 
corresponding to 1 month, 4 months, 8 months, 1 year, 5 
years, 10 years). Table 1 summarizes the running time in 
seconds for each scenario. 

In Fig 5 are represented three plots: Running Time for 1 
worker (𝑟𝑡01) vs. 10 workers (𝑟𝑡10), Processing Rate and 
Speedup, according with the following definitions: 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑅𝑎𝑡𝑒 =
𝑖𝑛𝑝𝑢𝑡𝑆𝑖𝑧𝑒

𝑟𝑢𝑛𝑛𝑖𝑛𝑔𝑇𝑖𝑚𝑒
 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑟𝑡01
𝑟𝑡10

 

For an input consisting of up to 12 files, the difference 
between the running time on 1 worker vs. 10 workers is not 

significant. That can be explained by the fact that the load is 
not big enough to exploit the computational capacity of the 
10 workers cluster and even 1 worker is enough for this input 
dimension. In a 10 workers cluster there is an additional 
payload for network transfer of data between mappers and 
reducers. The performance dramatically increases with the 
input getting bigger (example: for 120 files which 
corresponds to observations of one parameter at 5 minutes 
interval for 10 years) we observed a running time almost 3 
times lower on the 10 workers cluster, since 1 worker does 
not have enough resources to handle this input faster. It is 
expected that increasing much more the input we will see a 
higher ratio between running time on 10 workers vs. running 
time on 10 workers. 

 
 

Fig. 5. Experimental results: Running Time, Processing Rate 
and Speedup. 

We define efficiency as: 

𝐸 =
𝑁𝑖
𝑁𝑚1

 

where 𝑁𝑖 is the number of input records for Map1() and 𝑁𝑚1 
is the number of intermediate files that are produced after the 
execution of Map1(). If we consider that we have a number 
of 𝑛𝑓 input files, each file having 𝑛 records and the sample 
size is 𝑠 we obtain: 

𝐸 =
𝑛 ∗ 𝑛𝑓

𝑛𝑓 ∗ (𝑛 + 𝑛𝑓 ∗ 𝑠)
=

1

1 + 𝑠 ∗
𝑛𝑓
𝑛

 

For our experiments, we obtained an efficiency E in the range 
78.81% (for 𝑛𝑓 = 120) to 99.77% (for 𝑛𝑓 = 1). Given a 
number 𝑛𝑓 which corresponds to a certain efficiency 𝐸1 it is 
useful to know the increase ∆𝑛𝑓 in the number of input files 
that will correspond to an efficiency 𝐸2 > 𝛿 where 𝛿 is a 
target minimum efficiency. Using the equation above, we 
obtain: 

∆𝑛𝑓 <
𝑛 ∗ (1 − 𝛿) − 𝛿 ∗ 𝑠 ∗ 𝑛𝑓

𝛿 ∗ 𝑠
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For example, if 𝑛𝑓 = 50 input files we would like to know 
how many additional input files we can add so finally we get 
an efficiency over 𝛿 = 80%. We obtain in this case ∆𝑛𝑓 < 61 
so we can add up to 60 more files. 

5. CONCLUSIONS 

In this paper we discussed the importance of using Hadoop 
storage and distributed processing framework for large data 
sets acquired in various scientifically domains including 
environmental sciences. We also presented the related work 
for detecting outliers and then proposed an algorithm for 
chained MapReduce tasks to compute distance based ranks 
for outliers in time series. Due to its distributed nature, the 
proposed algorithm is highly scalable for large volumes of 
data. By processing in parallel, there is achieved a significant 
speed up compared with the original sequential algorithm. 
Our implementation provides also fault tolerance and load 
balancing. For future improvements of performance, we 
consider aggregating more input files and presenting to 
Map1() fewer files but with a bigger size, ideally each input 
file being  

3
4
∗ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 ≤ 𝑓𝑖𝑙𝑒𝑆𝑖𝑧𝑒 ≤ 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 

where 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒 refers to the Hadoop block size (by default 
64MB). Having less files of bigger size addresses problems 
of Name Node (such as bigger RAM consumption, each 
block corresponding to an object in memory, increased delay 
when Name Node starts, Network impact) and also of 
MapReduce (disk I/O, busy queues of map tasks). 

The second possible optimization refers to the known 
problem that using default InputFormat implementation in 
case of compute-intensive applications, the fairness in 
scheduling is neglected and leads to over-usage of the nodes 
where the data is physically located while the rest are left 
underutilized. In HDFS the location is a set of nodes where 
the block resulting from the split phase is physically located.  

On the other hand, caring only about fairness leads to 
scarifying data locality (thus performance) because a job 
might be scheduled to execute on a node that is far away 
from its data. As described by (Zaharia et al., 2010) the fair 
scheduler should be delayed to address the conflict between 
locality and fairness. A job that is scheduled to execute on a 
node that does not have local data for it waits for a small 
amount of time (few seconds) until an opportunity to be 
scheduled appears on a node that has local data for it. 

One direct use of proposed method is in the CyberWater 
systems, which is a cyber-infrastructure with the main goal to 
offer a solution for water quality in respect to the pollution 
phenomena studied on rivers network, first introduced by 
(Ciolofan et al., 2013). In this system an alert service was 
introduced, being a typical Publish/Subscribe application. 
The users can subscribe to receive notifications on their 
mobile devices (mobile phones, smartphones, tablets, etc.) or 
on their computers, via email. The Alerts Service depends 
directly on the other Services, like Propagation Analysis 
Service and Prediction Service, since the analyzed and 
predicted values are used as a basis for the action of sending 

notifications. Here, the main role of detecting outliers is to 
prevent false-positive situation and to avoid false alarms. For 
the prediction module, where different time series are used, 
we need to eliminate all outliers from the training set. Only in 
this way we can minimize the error for predicted values. 

Another applications of detecting outliers can be found to a 
variety of domains including mobile computing, smart cities, 
forensics and eHealth. The proposed processing model can be 
integrated in all these domains as a preprocessing phase for 
all involved time series. 
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