
Distributed Platform for the Analysis of Cryptographic Algorithms

Vlad-Cosmin Ozunu, Cezar-Costin Pı̂rvu , Cătălin Leordeanu, Valentin Cristea

Faculty of Automatic Control and Computers, University ‘Politehnica‘ of Bucharest, Romania
Email: vlad.ozunu@cti.pub.ro, cezar.pirvu@cti.pub.ro catalin.leordeanu@cs.pub.ro, valentin.cristea@cs.pub.ro

Abstract—Data protection and information security have
always been intricate problems of the majority of software
applications which have been deployed throughout the Internet.
Consequently, a substantial effort has been put into the creation
and development of a wide variety of solutions to tackle
this very issue.The aim of this paper is to offer a means of
performance measurement and security validation for some
of the encryption algorithms which are extensively used in
todays industry (DES, 3DES, AES, etc.), as well as some hash
functions.Therefore, the evaluation platform takes on the above
mentioned algorithms from two very divergent perspectives:
one of them focuses mainly on CPU vs. GPU performance
issues, whereas the latter tackles the problem of randomness of
the encrypted results by comparison to several strict criteria. In
order to achieve these goals, the platform provides a graphical
user interface which eases interactions such as: tests selection,
worker attachment or removal, events logging, input provision
and output analysis. The proposed solution represents an
evaluation platform that performs a wide range of tests on
hash and symmetric key algorithms in order to deduce their
performance and behavior on multiple architectures, as well
as various NIST tests, on different environments.

I. INTRODUCTION

It is an undeniable fact that the IT industry has signif-

icantly evolved throughout the last couple of decades, not

only due to the great increase in computational power of the

machines, but also due to human ingenuity in developing

software applications which have had a great impact on

the very core of todays society by revolutionising even the

way we interact. Nevertheless, in the context of an ever-

changing industry, one point of emphasis which has persisted

throughout this entire development period is represented by

security, or to be more exact, data protection when being

exchanged over the Internet. To solve this issue, the most

usual solution is to use an encryption algorithm in order to

try to prevent mischievous attacks from succeeding.

The aim of the proposed solution is to emphasise only

on the characteristics of symmetric key algorithms. To be

more specific, the evaluation platform focuses on providing

a variety of tests which are based around two of the most

widely encountered and intensively used algorithms of this

type in the actual IT industry: 3DES(Triple DES) and AES.

Since these algorithms are so significant in the context of

the present industry, it is undeniable that such a platform,

which has the clear purpose of not only evaluating their

performances, but also validating the cryptograms which

they produce, is extremely necessary.

Moreover, as mentioned above, a special emphasis has

been put on the development of performance tests (CPU

and GPU), which measure the time necessary for a ma-

chine (local or remote) to encrypt or decrypt a series of

character sets. The platform takes into account not only

the total encryption/decryption time, but also the individual

time necessary for the conversion of a chunk of the input,

feature which has offered the possibility of tracing charts

for a graphical representation of the results. These graphs

provide an insight on both the average run time and also the

spikes registered throughout the alteration of the input. We

compared different implementations of the same algorithms

such as the Java libraries LibCrypto (javax.crypto)[9] and

Bouncy Castle, as well as other more complex solutions such

as John the Ripper.[8]

An evaluation platform of this type is necessary, as it can

be used as a means of benchmarking the performances of

encryption algorithms on both CPU and GPU architectures.

Another role which can be successfully fulfilled by this

platform is represented by the discovery of vulnerabilities

present in some implementations of the algorithms, making

them less prone to attacks in the nearby future. In other

words, the evaluation platform can provide helpful observa-

tions through its results, which can set the stage for the next

generation of cryptographic algorithms.

II. RELATED WORK

Testing and evaluation of cryptographic algorithms is not

a new field. In an era when there are many research groups

dedicated to cryptology, this is a very dynamic field. The

interval between the publication of a new cipher and the time

when attacks are developed for it is becoming shorter and

shorter. Also, organizations such as the National Institute of

Standards and Technology (NIST) are helping by publishing

standards and official test suites for such algorithms [4] [5].

A general characteristic of most block ciphers is the fact

that most allow parallel execution with very little overhead.

This lead to the search for different hardware platforms, in

order to gain speed or energy efficiency. One such approach

is COPACOBANA (Cost-Optimized Parallel COde Breaker)

[6]. Their solution was based on a modular structure of

FPGAs. Due to the fact that a cryptographic algorithm is

usually based on the execution of multiple rounds, with

little or no communication inside a single round, it can

be mapped to a simple FPGA architecture, similar to a

2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems

978-1-5090-0987-9/16 $31.00 © 2016 IEEE

DOI 10.1109/CISIS.2016.139

296

Florin Pop

Spartan3. Similarly to the solution proposed in this paper,

the COPACOBANA architecture can be used for multiple

applications for encryption or hash functions. It can be used

for the evaluation of algorithms such as DES, AES or SHA-

1 or the testing of different attacks on these algorithms [7].

However, their approach is focused on the use of FPGA-

based architectures and it cannot be easily adapted for other

types of hardware, such as GPUs.

Apart from this approach, there are other research papers

oriented towards the use of cryptographic algorithms on

different hardware platforms. AES has received a lot of

attention, of course [1] [3]. This paper however is focused

on the evaluation architecture, more than the cryptographic

algorithms themselves.

III. SOLUTION ARCHITECTURE

This section is entirely dedicated to presenting the archi-

tecture which has been constructed in such a manner that

it can support the functionality of an evaluation platform of

the performances of several cryptosystems.

Figure 1. Architecture of the evaluation platform

A. Architecture components

As it can be observed from figure 1, the entire architecture

of the evaluation platform is based around the functionality

of the server. The server is basically the central structural

element as it mediates the communication between the user

and all of the selected clients (workers). Therefore, it can be

stated that the infrastructure of the evaluation platform relies

on this client-server interaction, as it offers the possibility

of both local and remote tests execution.

1) Server: The first module we will concentrate on is the

server, as it represents the principal component of the entire

architecture due to the functions it manages to carry out.

When a client tries to connect to the platform, the server

creates a special structure entirely dedicated to handling all

the communication aspects with the respective worker. The

reason why there is a need for such a structure relies on the

fact that the server must be able to simultaneously manage

not only the newly detected inbound connections, but also

the previously established ones.

Before being permitted to run tests on it, a client must

first off be registered through a process which implies the

transmission of some important information or relevant char-

acteristics. The attributes provided by the client will become

relevant in the context in which a test selection process is

in order. The server also offers keep-alive mechanisms with

both idle and busy clients, as it is extremely important to be

able to determine whether a malfunction has appeared and

the worker cannot be considered a viable candidate for test

execution any longer.

In addition to all of these characteristics, the server is

also tightly connected to the GUI (Graphical User Interface),

as it takes the input offered by the user, processes it by

detecting the tests and their inputs and transmits it only to

the selected workers. Likewise, after the respective series of

tests have been successfully executed, the server is the com-

ponent responsible for updating the GUI, more specifically,

announcing the graphical component that the workers have

finished their tasks and they are now once again eligible for

further analysis.

The server also offers the possibility of worker deregis-

tration if the user decides that the respective client is no

longer of use and no further testing is necessary. Another

reason for the implementation of such a functionality may

be represented by the situation in which the worker keeps

producing results, but the measurements provided do not

comply with certain, pre-verified, expectations.

Finally, another function worth mentioning refers to the

fact that the server is the one which computes the MAC

address of the local platform on which it is executed,

meaning that it offers the support necessary for the other

elements to determine whether they should fetch (through

SCP transfer) the results from the remote workers or not.

2) Client/Worker: Despite having two types of perfor-

mance tests (CPU-based and GPU-based), an important

observation refers to the fact that the client remains generic,

as it basically represents an abstraction of the underlying

architecture it is executed on. Therefore, we cannot state that

the clients are necessarily only composed out of CPUs or

GPUs, but, in fact, they can be seen as standalone platforms

of any type.

In terms of the offered functionality in the context of the

evaluation platform, the clients are the other endpoint of

the communication protocol and are mainly characterised

by having a name, a type of architecture, a short description

provided to the user and a chosen port. Moreover, a MAC

address is also computed for the client, as it is the criteria

for determining the location of the worker.

After a client is successfully registered to the evaluation

platform, it awaits commands from the server, commands

based on which the entire behaviour of the worker is

modelled. For instance, when a client is selected to be a

test subject, it immediately processes the command and

passes the arguments to a work handler-type structure where

297

the tests are going to be executed. The reason why such

an approach is necessary refers to the fact that the client

must be able to continuously respond to the keep-alive

messages transmitted by the server. This behaviour will be

also presented in a more detailed manner in the following

chapters, when more specific implementation details will be

offered.

3) Work handler: An auxiliary work handler structure is

needed in order to ensure the functionality of the evaluation

platform. In the context of the platform architecture, this

component is placed at client level and has the significant

role of determining the selected tests and the arguments the

user has provided for them.

After it has parsed these pieces of information, the handler

takes each test, determines the type of the respective test

(performance or validation) and then, executes it with the

required set of input data. In other words, the work handler

structure works as a dispatcher, as it only calls certain

methods from several classes depending on the chosen test

and the provided input. This mechanism is repeated for all of

the selected tests and ends with a notice sent to the client,

this notification propagating itself all the way back to the

server which then updates the GUI accordingly.

B. Communication protocol

The client-server communication protocol is basically the

foundation of the entire infrastructure needed for the design

of the evaluation platform. From a structural point of view,

the entire communication protocol can be easily split up

into three phases: registration, tests execution intertwined

with the keep-alive mechanisms and lastly, deregistration.

In the following paragraphs, these stages will be presented

in great detail and also in the order in which a client

would subsequently encounter them throughout all of the

interactions with the evaluation platform.

First of all, when the client desires to connect to the

platform, it sends a REGISTER request containing its name

(identifier) to the server. However, before any registration

can be realised, the server must also be informed about the

port selected by the client. Based on the clients chosen port

and name, the server generates its UID (User ID), which is

then sent back to the respective worker. Finally, the client

must confirm that it has received its server-level identifier by

sending an acknowledgement also containing supplementary

information (type, MAC address and a short description to

be provided in the GUI to the user).

Furthermore, the presentation of the second step of the

communication protocol must commence with the explana-

tion of the keep-alive mechanisms, as they are ubiquitous

throughout this entire stage regardless of the fact that the

client is executing tests or not. The server has the role of

initiating the process through a PING message, while the

client must acknowledge its reception by sending an ACK. In

order to prevent the network from flooding, a PING timeout

Figure 2. Registration phase

is used which, in this case, has been set to one second.

However, if an ACK message (sent by the worker) is lost,

the server will continue to dispatch PING messages up to

a maximum of 20 retries (that have not been followed by a

response). In this case, the client will be considered defective

and therefore, strict measures are in order: the connection

with the respective worker will be destroyed and the GUI

will be updated so that the user will not submit tests to

a faulty component. Yet, if the client manages to respond

with an ACK before the number of maximum retries is

reached, then the server will reset its timer and the process

will be repeated after the timeout period has expired. These

mechanisms are precisely depicted in figure 2.

Figure 3. Tests execution and keep-alive mechanisms

Moreover, when a series of tests are selected from the

GUI and launched into execution, the server immediately

notifies all of the preferred clients by sending a TEST

message containing the necessary information (test names

and arguments). Next, the worker creates the work handler

structure which will manage the correct execution of the

298

tests and if the initialisation of the respective structure is

successful, then the client will reply with a START message

to the server.

In a similar fashion, when all the tests are successfully

executed by a client, it must inform the server about this

situation and therefore, a FINISH message is used. When re-

ceiving this notice, the server will update the GUI, as it needs

to represent the respective client as an available worker for

further tests execution. After this step is successfully carried

out, the server will then send an acknowledgement back to

the respective client so that the worker will know that it can

now proceed to destroying the work handler structure.

Lastly, the final component of the communication pro-

tocol, the deregistration phase, is always initiated by the

server. More specifically, a client will be unregistered only

when it is marked for removal by the user by means of the

GUI. The case when the client stops responding to the PING

messages and the maximum number of retries is reached is a

different type of deregistration, as the server will not inform

the worker about its actions. These different approaches (soft

and hard deregistration) have been chosen in order to create

a clear distinction between the case in which the client is

removed as a result of the users interaction with the GUI

and the situation when the worker is unregistered due to its

inactivity (without user intervention).

IV. TEST SCENARIOS

Throughout this section we will emphasise on the types

of tests which have been integrated into the context of

the entire evaluation platform without neglecting the results

and observations obtained by means of their execution.

Therefore, brief descriptions of the tests will be provided

along with the manner in which certain measurements were

computed. Moreover, where further analysis is needed, plots

of the obtained results will be presented and observations

will be offered based upon the respective graphs.

Performance tests are based on the idea of measuring

the time needed for some cryptographic operations to be

executed: encryption or decryption. Moreover, several im-

plementations of these cryptosystems were used in the

development of these tests, meaning that a great variety of

results were obtained. These results will be presented in the

following subchapters, by taking also into consideration the

platform on which the experiments were performed (CPU

or GPU).

The first performance tests we performed are dictionary

based. The pieces of data that the experiments are required

to convert come in the form of a dictionary, with each

word submitted for alteration being placed on a separate

line of the input file.Furthermore, it is important to state the

manner in which such a test is executed at worker level.

Each word is taken from the input file, a transformation

is applied to it (encryption, decryption) and its duration is

precisely measured. These individual measurements will be

redirected to an output file, along with the results of the

cryptographic conversions. Additionally, based on all of the

computed durations, plots will be generated that will enable

the observation of both the average time necessary for a

transformation and also eventual load spikes which could

be encountered.

Taking all of these initial pieces of information into con-

sideration, the first sets of CPU tests which will be presented

are based around the two previously described Java libraries:

javax.crypto and Bouncy Castle. These experiments aimed to

uncover the manner in which the provided implementations

of the cryptosystems behaved when subjected to heavy load.

Therefore, a substantial dictionary was used in this case,

consisting of about 350 000 words, all of them being taken

from the English language.

As it can be observed from the figures, the AES im-

plementations provided by the two libraries have slightly

different behaviours when subjected to the same input file

and to similar execution conditions (the key size was also

equal). What is more, the displayed tests were completed by

using a local worker, but similar results were obtained when

running the same experiments on the remote cluster.

Figure 4. AES Bouncy Castle Dictionary test

Figure 5. AES javax.crypto Dictionary test

At first glance, the Bouncy Castle implementation seems

more stable, as in most circumstances, measurement spikes

take the form of single irregularities and do not combine

into clusters of inconsistent peaks. Stated differently, the

measurement spikes are distributed in a scarcer manner

than in the case of the javax.crypto. However, when it

299

comes to the case of the average encryption duration, the

obtained results have shown that they are comparable, both

implementations being able to surpass its counterpart in

some experiments. It is also important to mention that these

differences emerge only for sufficiently large test samples.

However, the 3DES implementations provided by the two

libraries did not follow the same pattern as in the case

of AES, more contrasting results being observed. In this

situation, the Bouncy Castle library managed to obtain a

significantly lower average encryption time. The explanation

behind the 3DES results lies in the manner in which spikes

are formed. Since the values of these peaks revolve around

similar figures in both cases, the reason for its much higher

performances must rely on the fact that fewer spikes are

obtained. In other words, the Bouncy Castle implementation

seems to display a higher resistance to this kind of irregu-

larities, meaning that it is the more reliable structure out of

the two.

Figure 6. 3DES Bouncy Castle Dictionary test

Figure 7. 3DES javax.crypto Dictionary test

The second set of performance tests which will be pre-

sented throughout this section are represented by the ones

implemented by means of the John the Ripper project. These

experiments will receive as input a list of DES-encrypted

words and the measurements will try to depict the time

markers when certain ciphers from the file are decrypted

successfully. These guess durations will be computed in

relation to the initial moment when the experiment was

begun. Moreover, the tests are characterised by a lower

precision when it comes to estimating each of the separate

obtained results. Therefore, all measurements which are

completed within a second will be considered to have been

finished at the same time (at the beginning of the respective

second). For instance, if several words are guessed between

seconds one and two, then all of them will be redirected to

the output file as having a time marker of one.
In addition to this, since all the encrypted words will

be guessed by the project without the help of any external

dictionary, the total runtime of an experiment can very easily

reach significant durations. For this reason, the selection of

input data cannot be as broad, vast as in the case of the

previously presented performance tests.

Figure 8. John the Ripper CPU results

Figure 9. John the Ripper GPU results

The results presented in figures 8 and 9 were obtained

by executing these type of performance tests on a remote

cluster. Furthermore, a homogenous dictionary was utilised

to generate these plots, as only six-letter long words were

encrypted and used to build the input file. The words

were also chosen so that they could cover as much of

the permutation space as possible, enabling the observation

of certain differences between the hardware platforms the

experiments were executed on.
The first observation which can be made when looking at

the obtained plots refers to the fact that both the CPU and

GPU results seem to follow an almost identical behavioural

pattern. The time markers illustrated throughout these figures

depict proportional increases in duration, meaning that the

graphs are very much alike. However, when comparing the

total runtime of the experiments, a significant discrepancy

arises. The GPU platform manages to guess all the encrypted

words in the same time that it takes the CPU to correctly

determine only about 60% of them.

300

Moreover, the processor seems to be able to size up to

the performances of the graphical unit only at the beginning

of the test. This observation conveys the idea that the differ-

ences between the two platforms will not be as significant

for smaller experiments. Therefore, a conclusion emerges:

the larger the runtimes of the experiments are, the greater

the gap in duration will be obtained.

V. CONCLUSIONS AND FUTURE WORK

By taking into consideration all of the results which were

presented in the previous chapter, it can be stated that

the evaluation platform has definitely fulfilled its goal of

offering a means of measuring, quantifying the character-

istics of the cryptographic algorithms. Furthermore, since

the experiments were an unquestionable point of focus in

the development process of the platform, the measurements

obtained by means of the application have supplied a wide

range of perspectives on the behavioural patterns displayed

by the cryptosystems when subjected to different execution

conditions.

The performance tests which have been integrated into the

functionality of the evaluation platform have illustrated that

when handling and cryptographically processing sufficiently

large amounts of data, the GPU architecture is the most

suitable candidate for this exact situation. Otherwise, the

time needed for the initialisation of the GPU makes it

inapplicable for this type of tests and therefore, better (or

comparable) results will be obtained by a standard execution

on the processor.

Moreover, when comparing the performances of the two

symmetric key algorithms which were selected for thorough

analysis, an important observation has to be specified. The

AES cryptosystem has proven that it is not only faster,

but also more flexible than the 3DES encryption algorithm,

meaning that this cipher is the most suitable out of the

two when it comes to handling large volumes of data.

Similar characteristics can be deduced when comparing the

performances of the Bouncy Castle cryptographic project to

the implementations of the javax.crypto library. In the case

of the AES cryptosystem, the javax.crypto package seems

to offer the most well-rounded implementation in terms of

reliability and adaptability.

Due to the infrastructure which the entire application

was built on, the evaluation platform can be very easily

extended especially when it comes to the idea of adding

new testing methods, or even modules. New experiments

based on the already integrated cryptographic algorithms

can be added in order to offer an even more accurate

assessment of their characteristics. For instance, collision

resistance experiments can be added to the functionality

of the evaluation platform, therefore offering a more pre-

cise, thorough analysis of the security provided by the

cryptosystems. Furthermore, new cryptographic algorithms

can be linked into the project by means of the already

incorporated Java-based libraries, which have been presented

in great detail in the previous sections. By displaying such

a great variety of test subjects, the evaluation platform can

become an even more efficient analysis tool.Additionally,

since the communication protocol is an intricate part of

the functionality of the entire application, a point of focus

should be represented by the improvement of this particular

mechanism. An optimisation, could be obtained by reducing

the number of messages which are exchanged between the

server and the clients, meaning that the communication lines

will seem less congested.

ACKNOWLEDGMENT

The work has been supported by the “Sectoral Oper-
ational Programme Human Resources Development 2007-
2013 of the Ministry of European Funds ” through the

Financial Agreement POSDRU/159/1.5/S/ 134398 and the

project Data4Water: Excellence in Smart Data and Ser-

vices for Supporting Water Management, Project number

690900/H2020-TWINN-2015.

REFERENCES

[1] Hamalainen, Panu, Timo Alho, Marko Hannikainen, and Timo
D. Hamalainen. ”Design and implementation of low-area and
low-power AES encryption hardware core.” In Digital System
Design: Architectures, Methods and Tools, 2006. DSD 2006.
9th EUROMICRO Conference on, pp. 577-583. IEEE, 2006.

[2] Moon, Dukjae, Kyungdeok Hwang, Wonil Lee, Sangjin Lee,
and Jongin Lim. ”Impossible differential cryptanalysis of re-
duced round XTEA and TEA.” In Fast Software Encryption,
pp. 49-60. Springer Berlin Heidelberg, 2002.

[3] Feldhofer, Martin, Johannes Wolkerstorfer, and Vincent Ri-
jmen. ”AES implementation on a grain of sand.” IEE
Proceedings-Information Security 152, no. 1 (2005): 13-20.

[4] Murphy, Sean. ”The power of NISTs statistical testing of AES
candidates.” Preprint. January 17 (2000).

[5] Soto, Juan. ”Randomness testing of the AES candidate algo-
rithms.” NIST. Available via csrc. nist. gov (1999).

[6] Kumar, Sandeep, Christof Paar, Jan Pelzl, Gerd Pfeiffer, and
Manfred Schimmler. ”Breaking ciphers with COPACOBANAa
cost-optimized parallel code breaker.” In Cryptographic Hard-
ware and Embedded Systems-CHES 2006, pp. 101-118.
Springer Berlin Heidelberg, 2006.

[7] Gneysu, Tim, Gerd Pfeiffer, Christof Paar, and Manfred
Schimmler. ”Three Years of Evolution: Cryptanalysis with
COPACOBANA.” In Workshop record of SHARCS. 2009.

[8] Lim, Ryan. ”Parallelization of John the Ripper (JtR) using
MPI.” Nebraska: University of Nebraska (2004).

[9] Nambiar, Vishnu P., Mohamed Khalil-Hani, and Muhammad
M. Zabidi. ”Accelerating the AES encryption function in
OpenSSL for embedded systems.” International Journal of
Information and Communication Technology 2.1-2 (2009): 83-
93.

301

